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1. Introduction - High-Latitude Ion Upflow/Outflow
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[onospheric plasma is transported to high altitudes (ion uptlow)
in response to a variety of plasma heating and uplifting
processes.

» DC electric fields frictionally heat the ion population resulting
in anisotropic increases in ion temperature that cause large
pressure gradients which push the ions outward and upward.

» Soft electron precipitation heats F-region electrons creating
electron pressure gradients which increase the ambipolar
electric field and drives ion uptlows.

» lons may undergo further acceleration from transverse
heating by broadband ELF waves.

» At high altitudes, mirror force propels ions to escape
velocities and results in outtlow to the magnetosphere.
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Despite processes being generally well-known, ion outflow is difficult to predict due to the
myriad of processes acting over a large range of altitudes, physical regimes, and time scales.
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» Solves time-dependent, nonlinear transport equations for
the conservation of mass, momentum, parallel and
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2. Anisotropic Ionospheric Fluid Model - GEMINI-TTA

perpendicular energy for six ion species.

» Includes electrons with an isotropic description.

» Contains chemical and collisional interactions with the
neutral atmosphere, NRL-MSISE-00.

» Includes photoionization and electron impact ionization.

» Utilizes an electrostatic current continuity equation to self-

consistently describe auroral effects.

This model is used to examine the effects of transient
energization on ionospheric upflow/outflow during the
ISINGLASS sounding rocket campaign. GEMINI-TIA is
well suited to ingest ground based measurements and in-situ
data including, but not limited to, particle precipitation, DC
electric fields, and transverse heating from BBELF waves.
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— Model/experiment setup
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Figure 1) The spatial relationship between the

model grid (outlined in blue triangles), PFISR

(magenta circle), PFISR beams (magenta

dashed lines), and the sounding rocket

trajectory (black line). The all-sky camera

field-of-view is not shown here.

» ISINGLASS B, launched from the Poker Flat Rocket

Range at 7:50 UT (22:50 LT) on March 2, 2017, flew
through aurora during a substorm expansion.

» An alternative to using in-situ rocket measurements
to drive the ionospheric model is to use PFISR DC
electric field (DCE) measurements and all-sky
camera precipitation measurements.

» There is a trade-off between the two data sets (in situ
vs. ground). In situ data provides high cadence,
moving, point measurements while the ground
data provides a lower resolution, spatially and
temporally evolving data set.

3. Energization of Ionospheric Upflow and Outflow
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0] Figure 3) The time evolution of the DC electric
field from PFISR (panel a) and the total energy
flux (panel b) and characteristic energy (panel c)
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\\ Figure 2) Compare in situ data to trajectory trace of ground data.

from an all-sky camera mapped to model grid.

Two simulations are discussed here. The first simulation uses the ground based measurements as
inputs from 7:50 to 8:00 UT (the time of the rocket flight) do drive an ionospheric response. Initial
conditions are generated by running the model for 24 hours in a quasi-steady state mode to
initialize plasma parameters. The second simulation also uses the ground measurements as
inputs from 7:50 to 8:00 UT. Initial conditions are created by first running the model for 23 hours
and 50 minutes in a quasi-steady state and then “pre-heated” with the ground measurements
from 7:40 to 7:50 UT. The ditferences between these two simulations are discussed below.
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Figure 4) E region density response (125 km).

» Electron impact ionization drives increases

in E region densities

> Within 2 minutes the simulations

similar E region densities (within 4 %)

» Pre-heating has minimal influence here
» Model uses Fang et al 2008 parameterization

have

Figure 5) F region density response (310 km).

» DCE drives F region density cavities
through temperature sensitive chemistry

» Density differences > 35% persist to the end

» Pre-heating has a lasting influence here

» Frictional-heating driven upflow generated
above the cavity altitude (not shown)
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4. Conclusions
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» Upflows reach this altitude in ~4 minutes
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2% 1> Pre-heating alters the initial conditions,
which modify the ionospheric response
= Eregion density differences last <2 min.
* Fregion density differences last >10 min.

> O" flux from a sheer driven upflow

> Sheer end results in downflow that
overcomes subsequent upflow from DCE
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Figure 6) Evolution of the Of flux, minus steady state
background conditions to remove diurnal variations, at
1000 km over the duration of the simulation.

%> Much of the ion source population has
been already been uplifted resulting in a
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For further comparison, simulations driven by in

In situ data

- | Situ - no PSD

B Ground data

I Ground + pre-heating

00}

|

"'\_

Vi

U.

fd

I

|

I

situ data, held constant for the duration of the
flight, have also been run with no pre-heating.
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\~> Artificially stable sheer in the in situ data driven

=r» The location of maximum O% transport is
dependent on energy source variability.

simulations overestimates the total number of
O* ions transported through 1000km.
» Realistic  spatiotemporal variability is

important when accurately determining the
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location and amount of upflow and potential

smaller response to the subsequent DCE.

Figure 7) Total O* transported by end of simulation at 1000 km.

outflow to the magnetosphere.
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