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Poker Flat Incoherent Scatter Radar (PFISR) Hypothesis Test Influence of radar power
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The incoherent scatter radar (ISR) signal is due to Thompson scatter of radio experiment, simulated spectra are constructed & ’// g | 0 | combin ?he eams E))r oxtendin y Fitting Residual
waves by free electrons. However, the spectrum of incoherent scatter radar by adding white noise to ideal Lorentzian and ¢ * e % 7 _ J L J | | o
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radio waves consists of a narrow ion-line superimposed on a broader electron- spectrum. These simulated spectra are fitted to .7 1 e s L 10000 reaizations
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