Equatorial Thermosphere Anomaly and Related Helium Density Signatures

Hannah L. Holt, Jeffrey P. Thayer, and Torfinn Johnsrud

University of Colorado Boulder, Department of Aerospace Engineering Sciences

Science Question:

How can helium be used as a tracer of upper thermosphere dynamics and elucidate the driving mechanism behind the equatorial thermosphere anomaly (ETA)?

Motivation

What is a "tracer" of vertical motion?

 n_{He} = helium number density w = vertical wind

 $\frac{kT}{-m}$ average neutr

 $=\frac{M}{Mg}$, average neutral gas scale height

 $m_{He} = molecular mass of helium$

M = mean molecular mass of neutral gas

- Vertical winds couple to the thermodynamic equation through adiabatic heating and cooling
- For a minor species like helium, $\left(\frac{m_{He}}{M}-1\right)<0$, therefore significant vertical winds will produce anti-correlated density features in helium with respect to a pure diffusive profile
- Changes in vertical winds with height affect helium composition at altitude of interest
- Driving forces of divergent motion:
 - 1) Pressure Gradients
 - 2) Coriolis
 - 3) Viscous Drag

4) Ion Drag

Affect bulk vertical motion differently, [Hsu et al., 2016]

Vertical mixing

Why use helium as opposed to another gas/method?

Helium's unique properties in the thermosphere make it a useful tool to evaluate seasonal, diurnal, and local time circulation processes.

Acknowledgements: This work was supported by NSF CEDAR Grant AGS:1452309. Thanks to Dr. Vicki Hsu for her assistance with the NCAR-TIEGCM simulations.

LT = 4 + Lon/15. (Liu et al. 2014, JGR)

Conclusions

hydrodynamic/thermodynamic coupling of the ETA. Note: MSIS does not contain the ETA.

- Helium can be used as a tracer of seasonal, diurnal, and local time divergent wind patterns and corresponding vertical motions.
- One consequence of divergent circulations is adiabatic heating and cooling.
- Helium structure around the ETA is indicative of circulations imposed by field-aligned ion drag.