

ESTIMATING THERMOSPHERIC DENSITY AND TEMPERATURE FROM COMBINED OPTICAL AND RADAR MEASUREMENTS

Lara S. Waldrop Univ. of Illinois at Urbana-Champaign

- >> altitude range: 400-1000 km
- \succ composition: H, He, O \rightarrow simplified chemistry
- motivation: effect on satellites, climatological model validation, space weather studies, detection of long term climate change
- > routine estimation demands a ground-based approach

CEDAR 2006 POST-DOC REPORT

THERMOSPHERIC PARAMETER **ESTIMATION: OVERVIEW**

PARAMETRIC APPROACH: simple, model-independent

 \succ O+ energy balance O+ momentum balance

historically used to constrain theoretical estimates of Q, not to derive [O]

THERMOSPHERIC PARAMETER ESTIMATION: OVERVIEW

PARAMETRIC APPROACH: simple, model-independent

> O+ energy balance

> O+ momentum balance

historically used to constrain theoretical estimates of Q, not to derive [O]

> H+ continuity balance \rightarrow [O] and Tn

INVERSE-THEORETIC APPROACH: complicated, model-dep.

 \succ airglow brightness inversion:

 $H | 656.3 \text{ nm} \rightarrow [H]$ $O | 844.6 \text{ nm} \rightarrow [O]$

emission line profile inversion: He I 1083 nm -> Tn

H+ CONTINUITY BALANCE

$$\frac{\partial [\mathrm{H}^+]}{\partial t} + \nabla \cdot \Phi = k_f(\mathrm{T}_n)[\mathrm{H}][\mathrm{O}^+] + \cdots$$
$$k_r(\mathrm{T}_i)[\mathrm{H}^+][\mathrm{O}]$$

SOLVE FOR [O]...

1867

[O]_{CB} ESTIMATION

recent work:

CB technique appears valid at night between 500-800 km

1867

[O]_{CB} ESTIMATION

1867

recent work:

- CB technique appears valid at night between 500-800 km
- daytime estimation also may be possible using model specification of [H]

[O]_{CB} ESTIMATION

recent work:

- CB technique appears valid at night between 500-800 km
- daytime estimation also may be possible using model specification of [H]
 - unphysical enhancement near sunset?

Waldrop et al., JGR, in press

future work:

- incorporate improved line-of-sight ion velocity estimates via spectral fitting of distinct O+ and H+ velocities (e.g., Vickrey et al., 1976)
- > apply CB technique to new dual-beam radar data in order to incorporate horizontal flux divergence:

SINGLE BEAM ALONG ZENITH:

$$\nabla \cdot \mathbf{\Phi} = \nabla \cdot (n\mathbf{V}) \approx \frac{\partial (nV_z)}{\partial z} = n \frac{\partial V_z}{\partial z} + V_z \frac{\partial n}{\partial z}$$
DUAL BEAMS ALIGNED ZONALLY:

$$\nabla \cdot \mathbf{\Phi} \approx n \frac{\partial V_z}{\partial z} + V_z \frac{\partial n}{\partial z} + V_x \frac{\partial n}{\partial x}$$

future work:

- improve line-of-sight ion velocity estimation via spectral fitting of distinct O+ and H+ velocities (e.g., Vickrey et al., 1976)
- > apply CB technique to new dual-beam radar data in order to incorporate horizontal flux divergence
- apply CB technique to Arecibo MRACF data in order to extend altitude range of derived solutions down to F-region peak
 - improve [H] estimation
- after the above refinements.....incorporate [O]_{CB} estimates into EB and MB equations in order to derive Burnside factor F as an unambiguous constraint on Q

[H]₆₅₆₃ ESTIMATION

early work:

inverse-theoretic technique developed by Kerr and He

He et al., JGR, 1993

Waldrop et al., JGR, in press

[H]₆₅₆₃ ESTIMATION

early work:

inverse-theoretic technique developed by Kerr and He

recent work:

> installed array detector on Arecibo FPI for improved SNR (time resolution)

- [H]₆₅₆₃ ESTIMATION -

early work:

inverse-theoretic technique developed by Kerr and He

recent work:

installed array detector on Arecibo FPI for improved SNR (time resolution)

future work:

> incorporate measured Tn as forward model constraint

cross-calibrate H alpha brightness with Wisconsin data (Roesler, Mierkowitz, Nossal)

O I 844.6 EMISSION

- ➤ faint twilight emission (< 40 R)</p>
- derives from electronic transition >10 eV above ground state
- historically used for auroral studies
- simple excitation chemistry dominated by photoelectron (PE) impact at Arecibo (Lancaster, Kerr)

O I 844.6 EMISSION

1867

faint twilight emission (< 40 R)</p>

- derives from electronic transition >10 eV above ground state
- \blacktriangleright historically used for auroral studies
- simple excitation chemistry dominated by photoelectron (PE) impact at Arecibo (Lancaster, Kerr)
- emission brightness is measured routinely at Arecibo using a tilting filter photometer:
- PE model inversion of O I 844.6 nm emission brightness is an attractive candidate means for [O] estimation

Lancaster et al., JGR, Mar. 2000

[O]₈₄₄₆ ESTIMATION

1867

early work:

- GLOW consistently underestimates 844.6 nm brightness
- timing of PE onset does not agree with data

Lancaster et al., JGR, Mar. 2000

[O]₈₄₄₆ ESTIMATION

early work:

- GLOW consistently underestimates 844.6 nm brightness
- timing of PE onset does not agree with data

future work:

- FLIP model comparisons (P. Richards): climatological trends
- Other excitation mechanisms, e- sources
 - ISR constraints on PE flux (ideally from conjugate ionosphere)

He I 1083 nm EMISSION

- metastable He is a minor species (~few atoms/cm⁻³)
- He(2³S) is formed primarily via PE impact on He(1¹S)
- bright (~1kR) twilight emission at 1083 nm via resonant fluorescence of solar line

1867

He I 1083 nm EMISSION

metastable He is a minor species (~few atoms/cm⁻³)

- He(2³S) is formed primarily via PE impact on He(1¹S)
- bright (~1kR) twilight emission at 1083 nm via resonant fluorescence of solar line
- FPI observations of 1083 nm line profile at Arecibo (Noto, Kerr):
- He I 1083 nm line profile is an attractive candidate means for temperature and wind estimation at the exobase (otherwise inaccessible)

Noto et al., JGR, June 1998

early work:

assumed Gaussian shapes for the instrument response function and the doublet source profile in order to derive "effective" neutral temperature

1867

early work:

- assumed Gaussian shapes for the instrument response function and the doublet source profile in order to derive "effective" neutral temperature
- RESULT: Tn₁₀₈₃ increases unphysically with increasing shadow height (Noto, Kerr)

Noto et al., JGR, June 1998

early work:

- assumed Gaussian shapes for the instrument response function and the doublet source profile in order to derive "effective" neutral temperature
- RESULT: Tn₁₀₈₃ increases unphysically with increasing shadow height (Noto, Kerr)
- speculate: He+ ion recombination is a source of "hot" metastable He
 - [He+] can be significant
 - Ti > Tn at twilight
 - thermalizing collisions quench metastable He population

recent work:

incorporated He+ recombination souce into model of He(2³S) production using Arecibo ISR measurements of [He+] and Ti

recent work:

- incorporated He+ recombination souce into model of He(2³S) production using Arecibo ISR measurements of [He+] and Ti
 - compiled a climatological description of 1083 nm brightness sources

recent work:

- incorporated He+ recombination souce into model of He(2³S) production using Arecibo ISR measurements of [He+] and Ti
- compiled a climatological description of 1083 nm brightness sources
- developed algorithm to deconvolve measured line profile and instrument response function using regularized inversion (Kamalabadi, Reuillon)

future work:

- revisit Tn₁₀₈₃ estimation from existing 1083 nm data
- new IR array detector at Arecibo (Noto) will provide increased SNR & resolution of 1083 nm line profile -- underway Fall 2006

ACKNOWLEDGEMENTS

Erhan Kudeki UIUC Farzad Kamalabadi

> Sixto Gonzalez Mike Sulzer Arecibo Observatory Nestor Aponte

Craig Tepley Raul Garcia Arecibo Observatory Eva Robles

Bob Kerr NSF

John Noto Scientific Solutions, Inc.

