

Wave-wave Interactions and Modulation in the Mesosphere and Lower Thermosphere (MLT)

A case study during the 2019 Southern Hemisphere SSW

¹Zishun Qiao, ²Alan Z. Liu, ¹Nick M. Pedatella, ³Gunter Stober, ^{4,6}Iain M. Reid, ⁵Javier Fuentes, and ⁶Christian L. Adami

¹NSF NCAR High Altitude Observatory (US), ²Embry-Riddle Aeronautical University (US), ³University of Bern (Switzerland), ⁴University of Adelaide (Australia), ⁵European Southern Observatory (Chile), ⁶ATRAD Pty. Ltd. (Australia)

CEDAR Workshop, June 26, 2025

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977

Sudden Stratospheric Warmings (SSWs) are dynamical disturbances that produce anomalous wave activities and temperature responses in the whole atmosphere

Motivation & Background of the 2019 Southern Hemisphere (SH) minor SSW

- 2019 SH Sudden Stratospheric Warming (SSW) is a rare SH SSW (NH SSWs occur ~6 times per decade in average);
- 2. Quasi-6-Day Wave (Q6DW) are greater than the average in September, globally observed in the MLT region and ionosphere;
- **3. Motivation**: Does this strong **Q6DW** activity impact on **tides and Gravity Waves (GW)** propagation, thus, contribute to the 6-day periodicity in the ionosphere?

Ground-based instruments: a pair of meteor radar at ~30°S

CONDOR: a recent multi-static meteor radar system (Qiao et al., 2025). More description in the paper:

	Radar Specs	Site, lat, long, Height	Status during SSW
CONDOR	Freq: 35.15MHz	ALO, 30° S, 71°W, 2520m	From 06/26/2019
	High power (48kW) & high detection rate (30,000/day/site)	SCO, 31° S, 70°W, 1140m	From 07/14/2019
		LCO, 29° S, 71°W, 2339m	From 02/20/2020
Buckland	Freq: 55Mhz	Main, 34.6°S, 138.5°E, 302m	ST mode not MLT
Park MR	Power: 18kW	Remote, 35.1°S, 138.8°E, 2m	10 days of wind used

Table 1. Specs of two meteor radars used in Qiao et al., (2024).

More than U & V: GW variance, temperature, etc. from CONDOR data

$$\begin{aligned} \mathbf{F} &= \hat{\mathbf{j}} F_y + \hat{\mathbf{k}} F_z \\ F_y &= -\overline{u'_0 v'_0} = -\frac{1}{2} \Re\{\tilde{u}_{Q6DW} \tilde{v}^*_{Q6DW}\} \\ F_z &= \frac{gf}{N^2} \frac{\overline{\theta'_0 v'_0}}{\theta_S} = \frac{gf}{N^2} \frac{\Re\{\tilde{\theta}_{Q6DW} v^*_{Q6DW}\}}{2\theta_S} \end{aligned}$$

- With U, V, and T of the Q6DW, the *local* Eliassen-Palm (EP) flux can be calculated with assumption of temporal average
- Strengthens and relative importance of the momentum flux and heat flux of the Q6DW can be investigated

151.75° longitudinally spaced CONDOR and Buckland Park meteor radar meridional winds are combined to diagnose the parameters of Q6DW

Q6DW-diurnal tide interaction and modulation on gravity wave variances

Two potential ways of the 6-day periodicity penetration into the ionosphere

- A strong W1 Q6DW activity associated with the rare 2019 SH minor SSW is determined by two meteor radars at 30° S.
- First result of meteor radar observed Q6DW E-P flux indicates an enhancement during the SSW.
- Both **GW wind variance** and **diurnal tide amplitude** indicate a strong, clear quasi-6-day periodicity in meridional winds.
- Q6DW-Diurnal Tides-GW interactions in the MLT region may contribute to the reported ionospheric 6day variability (Yamazaki et al., 2020).

Above 100km	Ionospheric 6-Day oscillations ☆ GW filtering? ☆ Tides, Secondar	[Yamazaki et al., 2020] y waves?	My first
80-100km	Q6DW-Tide, Q6DW-GW modulations	Current Work	
30-50km	Q6DW enhancement 2019 SH SSW		
	Earth		

Ay first CEDAR back to 2019...

Acknowledgement: NSF AGS-1828589, NSF NCAR ASP GVP & Postdoc Fellowship