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Initial motivation (two
years ago)

CEDAR: Coupling, Energetics and
Dynamics of Atmospheric Regions
Program

Mesosphere and Lower
Thermosphere (MLT) cougles the
lower atmosphere with the
ionosphere-thermosphere (CEDAR

objective).
NSF requires broad impact .

MLT is too high for weather, climate, ozone
hole, too low for LEO and spread F,
scintillation etc, except billionaire
tourism.,

MLT/lower atmosphere impact satellite
drag/communication indirectly
through wave propagation and other
processes.

Strategic Goal 2 — Discover

Create new knowledge about our universe, our
world and ourselves.

This goal furthers the fIrStPaI’I of NSF's mission, "to
promote the progress of science,” pursuing the
generation of new knowledge so the nation ,
remains a global leader in expanding discovery in
science, engineering and learning. By generatin
new knowledge, NSF-funded researchers provide
the nation with the capability to maintain _
scientific, technological and economic leadership
in a competitive world.

Fundamental research is a
capital investment for the
nation. Basic research leads to
new kn owledge. It provides scientific

u

capital. It creates the fund from which the
practical applications of knowledge must be
drawn. New products and new processes do not
appear full-grown. They are founded on new
principles and new coriceptions, which in turn are
painstakingly developed by research in the purest
realms of science.

NSF 2022-2026 Strategic Plan




Motivations

* Urgent need to understand and predict thermosphere mass
density/satellite drag at LEO, collision avoidance

* Not all space objects burn out during reentry

* Satellite reentries around 120 km (ERS-2 as example), the MLT region

* To identify more direct applications for the mesosphere and lower

thermosphere researches

No damage reported after 5,000-pound satellite fell to Earth Wednesday

By Ashley Strickland, CNN
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Is the lower atmosphere significant for satellite
drag and reentry?

* Indirectly important for Seasonal Variation of neutral density
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NRLMSIS 2.1 based on observations

TIE-GCM base run: no lower atmosphere information at lower boundary
of 98 km

TIE-GCM v3 nudged by WACCM-X, the lower thermosphere controls O
abundance for the thermosphere/ionosphere, including gravity waves,

tides, planetary waves that are excited by “terrestrial weather” and
other. pr.ocesses IAV in global-mean mass density @ 400 km
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Is the lower atmosphere significant for satellite
drag and reentry?

Yes and No for day-to-day variability, depending on
altitude, solar cycle, etc.



Numerical experiment (control runs with no variability caused
by solar or geomagnetic activities)

* WACCM-Xruns during solar minimum with and without varying F10.7 and Kp

* WACCM-Xruns by Nick Pedatella: ensemble of 40 Northern Hemisphere
Winhters by introducing random perturbations to the model temperature fields
at the start

* Constant solar flux: 70 SFU, geomagnetic activities: 0+
* MSIS00: F10.7=70, ap=1

 Sean Bruinsma ran reentry POD (Precise Orbit Determination) program from
200 kmto 120 km

* Semi-major axis= 6500 km eccentricity= 0.001 inclination = 89
* Polar orbiting

* Forces in calculation: gravity field, 3d body (Sun, Moon), ocean and solid
earth tides, satellite drag



Yue et al. (2022) shows variability of global mean mass density
(satellite drag) in WACCM-X is controlled mainly by solar EUV
(F10.7) and geomagnetic forcing above 150 km and the lower
atmosphere forcing below 120 km during solar minimum.
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120 km to 150 km is the transition region from lower atmosphere
dominant to solar/geomagnetic forcing controlled
Reentry calculation starts at 200 km, ends at 120 km | ower Solar/geomagnetic

atmosphere  caused variation
caused variation
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Predicted Epoch of re-entry (UTC)

« Reentry uncertainty is largely the result of how difficult it is to forecast the
density of the air through which the satellite is passing. Atmospheric density
determines the strength of the drag that causes ERS-2's orbit to decay, but
our ability to predict it is limited by how well we can model our very complex
atmosphere and by current space weather conditions. (ESA Space Debris
Office). How well can we predict F10.7 and Kp for next month?

ERS-2 (95021A,23560), TLEs till 24052.5965 (2024-02-21)
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Sudden Stratospheric Warming (SSW) is one of the strongest lower
atmosphere perturbations to cause day-to-day variability in the
mesosphere, ionosphere and thermosphere (Pedatella, 2023)
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Naturally or naively we speculated if SSW could impact
satellite reentry time by changing the thermosphere density
(Pedatella, 2023)
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Ensemble SSW WACCM-X runs comparing to MSIS00 (no
variability caused by the lower atmosphere)
* Ensemble #6: strongest polar vortex (opposite to SSW)
Ensemble #11:strong SSW, starting Jan 28+3
Ensemble #18: neutral conditions

Density Scaled ~0.7 to NRLMSIS00

Lower atmosphere forcing causes 1-2 hours or 1-2 orbit uncertainty in reentry
time or 2%

Model (ensemble number) Reentry time from 200 km (in days)

MSIS00 5.3
WACCM #6 5.053
WACCM #11 SSW 4.993

WACCM #18 5.145



Realistic SD-WACCMX-DART SSW run in Jan 2009 with F10.7

and Kp

comparing to MSIS00

Geomagnetic quiet time and solar minimum
References: Pedatella et al., 2018; Harvey et al., 2022
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Reentry time from SD-WACCMX-DART reduced from 4.5 days to 4.4
days during the onset of SSW while MSIS00 shows no change

Global mean density anomaly from monthly mean at 120 km

Global root-mean-square-deviation relative to bimonthly mean
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During Solar maximum year, reentry time is well correlated with F10.7 27
oscillation, larger solar heating = higher density = shorter reentry time
Discrepancy between models are larger than drivers
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During Solar minimum and geomagnetic quiet time, reentry
time variation driven by the lower atmosphere forcing is
comparable to solar/geomagnetic drivers

Model discrepancies are large
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Conclusions

* This study was a result of collaboration between MLT dynamics and
geodesy

* Lower atmosphere is driving the seasonal changes (AO, SAQ) of
thermosphere density and satellite drag in addition to solar EUV.

* 120-150 km is the transition region from the lower atmosphere
{namlcally controlled MLT to solar EUV/magnetosphere controlled

« SSW causes 1-2 hours or 1-2 orbit uncertainty in reentry time or 2% of
total time from 200 km altitude

* 2009 SSW caused reentry time uncertainty is comparable to solar and
geomagnetic drivers during solar minimum (half of satellite lifetimes)

* During solar maximum, solar radiation is well correlated with reentry
time

* Reentry time differences due to model discrepancies are larger than
the drivers



Thank you and Questions?




Is the lower atmosphere significant for satellite
drag and reentry?

* Yes indirectly, decadal orbit changes due to
anthropogenic CO2 cooling
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Is the lower atmosphere significant for satellite

drag and reentry?

* Yes, Even _of neutral density is largely controlled

by lower atmosphere forcing, in addition to imbalanced EUV heating,
pressure gradient, magnetosphere energy input, etc.
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how much O is “available” for the

thermosphere and ionosphere
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