Global-scale wave impacts on the coupled IT system from daily to sub-seasonal timescales

Jens Oberheide Department of Physics & Astronomy Clemson University

Tidal temperatures and winds in the E-region from TIMED

• 2004: Maura Hagan

Tidal coupling in the Earth's atmosphere Solar and latent heat forcing; PW-tide and tide-tide interactions

• 2014: Jeff Forbes

Atmosphere-ionosphere coupling by tides and planetary waves IT complexity introduced by tides; outstanding issues and challenges

• 2023: Ruth Lieberman

The role of tides and planetary waves in atmospheric vertical coupling Recent mission progress in meeting the challenges; future observational needs

• This presentation:

Observing the tidal & PW "weather" from space. **How so?** Ionospheric response and space weather predictability. **What for?**

Waves Couple the Lower with the Upper Atmosphere and Ionosphere

- Global annual mean
 vertical energy flux and
 global wave power due
 to upward propagating
 tides based on TIMED
 observations for the
 year 2009
- The global tidal wave power is around 5 GW at 100 km.

Neogi & Oberheide (2025), 2024GL113257

Global-Scale Waves and Precise Orbit Prediction in VLEO

Color contours: neutral density perturbation (%) due to global-scale waves (tides) from empirical CTMT model

Solid line: orbit trajectory WITH tides

Dotted line: orbit trajectory WITHOUT tides

Orbit prediction difference histogram for 24-hr orbit integration at 200 km. Absolute position difference: 14 km; standard deviation: 5 km

Leonard et al. (2012), Space Weather doi:10.1029/2012SW000842

Precise orbit prediction of objects in VLEO requires precise knowledge of global-scale waves

Global-Scale Waves Vary from Days to Decades

Tidal "weather" in the E-region, SABER/TIMED temperature tides

Extended from Kumari & Oberheide (2020), 2019JD031910

Days, weather, interaction with planetary waves, polar vortex strength, ...
1-3 months, recurring tropical convection Madden-Julian Oscillation (MJO)
3-12 months, circulation, forcing
2 years, stratospheric QBO
4-5 years, El Niño
11 years, solar cycle

How to observe tides from space?

ICON/MIGHTI Local Solar Times and Tides

MIGHTI, Temperature-A, 97 km 1-Mar 2020 + 34 days

Temperature-A (K)

6

Six satellites, 24° inclination, 530 km, launched on 25 June 2019

- Since Feb 2021, sats are in final configuration with a ~60° lon separation
- IVM instrument & RO soundings

GIS electron density profiles

formosat7.earth.ncku.edu.tw Lin et al., 2020; Chou et al., 2021

- Assimilates ground-based GNSS and COSMIC-2 RO slant total electron content
- <u>Hourly</u>, pole-to-pole, gridded, 2.5° x 5° (lat x lon), 20 km vertical resolution

Fly satellite constellations

- COSMIC-2 (6 sats) in F-region ionosphere; day-to-day variability *Rajesh et al., 2021; Oberheide 2022*
- Don't have this for the neutral atmosphere
- In special cases, MLS & SABER can be combined Nguyen & Palo, 2013; Wang et al., 2021

Make some assumptions/special cases

• Resolve variability within a few days by neglecting some tides *Oberheide et al., 2015; Gasperini et al., 2015; Dhadly et al., 2018; ...*

Statistical approaches

- <35-day in MIGHTI (standard deviations): *Oberheide et al., 2024*
- <30-day in SABER (autoregression methods): *Vitharana et al., 2019*

The Statistics of Short-Term Tidal Variability in the Mesosphere/Lower Thermosphere from MIGHTI/ICON

Oberheide et al. (2024), JGR 2024JA032619

Short-term Variability at 97 km, a few Examples

Short-term tidal variability is on order 40-50% of the 35-day running mean amplitudes. Similar results for other diurnal and semidiurnal tidal components.

Validation with COSMIC-2

We know the "true" tides for every day from COSMIC-2. Can thus compute "true" 35-day standard deviation. Compares very well (for DE3) with MIGHTI E-region standard deviation in T, as it should be (DE3 does not have thermospheric sources and coupling is E-region dynamo) TIE-GCM with MIGHTI-based statistical tidal variability Towards understanding pre-conditioning of the IT

Drive TIE-GCM with Observed Tidal Standard Deviations

Observationally-Driven TIE-GCM Reproduces Ionospheric Variability, N_e @ 300 km

Successfully incorporated observed lower boundary tidal variability into TIE-GCM.

Resulting F-region electron density variability (2-35 days) compares well with COSMIC-2.

Work in progress looks into importance of tidally induced variability for ionospheric response to solar/geomagnetic forcing.

Tidal & Planetary Wave Variability in the F-region Ionosphere in Response to the Weather of the Stratosphere and Troposphere *Predictability potential*

Sudden Stratospheric Warmings (SSW)

split of polar vortex, large mean circulation and temperature changes in polar stratosphere; predictable **1-2 weeks in advance**

- 1. SSW enhances global-scale wave driving, particularly SW2
- 2. This changes residual mean circulation
- 3. 2-cell circulation pattern in lower thermosphere reduces [O]
- 4. Propagates through molecular diffusion into upper thermosphere
- 5. Results in observed 10-15 % O/N_2 depletion

Oberheide et al. (2020), 2019GL086313

GOLD observation are the first observational proof of this mechanism that was proposed by Yamazaki and Richmond (2013) and Pedatella et al. (2016)

The Solar SW2 & Lunar M2 Tides in the Ionosphere @ 300 km

NAM index (neg: weak vortex; pos: stable vortex)

SW2 electron density amplitudes are enhanced during SSW

-> Consequence of enhanced SW2 zonal winds in E-region

Update of Oberheide (2022), 2022GL100369

M2 electron density amplitudes behave similarly

 Consequence of Pekeris resonance of M2 tidal winds in strato/mesosphere

Courtesy of Deepali Aggarwal, see her talk at 11:10 today in the Wave-Mean Flow Coupling workshop

The Lunar M2 Tide in the lonosphere @ 300 km

M2 response to SSW throughout the ionosphere in BOTH hemispheres

M2 electron density amplitudes behave similarly

 Consequence of Pekeris resonance of M2 tidal winds in strato/mesosphere

Courtesy of Deepali Aggarwal, see her talk at 11:10 today in the Wave-Mean Flow Coupling workshop

The Solar SW2 Tide in the Ionosphere @ 300 km

SW2 electron density amplitudes are enhanced during SSW

-> Consequence of enhanced SW2 zonal winds in E-region

Update of Oberheide (2022), 2022GL100369

SW2 zonal wind amplitudes in E-region are enhanced during SSW

-> Consequence of mainly circulation changes during SSW

Ionospheric Response to Polar Vortex Strength outside SSW

SSW occur only ~once per year but the vortex can be "wobbly" all the time Northern Annular Mode (NAM) predictable **1-2 weeks in advance**

The Solar SW2 Tide in the Ionosphere @ 300 km

The Solar SW2 Tide in the Ionosphere @ 300 km

Aggarwal et al. (2025), 2024GL111313

Ionospheric Response to the Madden-Julian Oscillation (MJO)

MJO is recurring weather phenomenon in the tropical troposphere, subject of intense study due to its relevance for climate and medium-range weather forecast; predictable **several weeks in advance**

Connecting Recurring Weather Events with Ionospheric Variability: the MJO

Madden-Julian Oscillation (MJO)

- Eastward, 30-96 days
- Changes convection and circulation wave sources and wave filtering

MJO-filtered convective rainfall anomalies from TRMM satellite observations

MJO impact on tides is largely due to forcing modulation *Kumari et al. (2021), 2021JD034595*

2.8 2.4 2 1.6 1.2 0.8 0.4 -0.4 -0.4 -0.8 -1.2 -1.6 -2 -2.4 -2.8 -3.2

Jiang et al. (2020)

2020, Fourier spectrum of DW1 (diurnal migrating tide)

Consistent spectral signals from the troposphere to the E-region to the F-region

Know: MJO modulates tidal temperatures in the E-region on order 10% (DW1) and 25% (DE3) *Kumari et al. (2020), 2020GL089172*

Connecting Recurring Weather Events with Ionospheric Variability: the MJO

Wavelet of MJO-filtered temperature tides in the E-region

Wavelet of MJO-filtered

Electron density tides in the F-region

Largely due to E-region dynamo although field-aligned winds have some contribution (work in progress)

Planetary Waves in the F-region lonosphere

Ionospheric oscillations at planetary wave periods 2-20 days are consequence of 2nd order PW-tide interactions because PWs cannot easily propagate into the E-region moderate predictability of a **few days**

Short-term Variability in the Ionosphere due to Planetary Waves

6-day westward propagating zonal wavenumber 1 (Q6DW1) evident in MLT and F-region ionosphere; 2019 Antarctic SSW

Possible coupling

- E-region dynamo
- Tidal wind modulation of pre-reversal enhancement of vertical ion drifts

Gan et al. (2023), 2023GL103386

Short-term Variability in the Ionosphere due to Planetary Waves

Short-term Variability in the Ionosphere due to Planetary Waves

Model and observation show strong zonally symmetric vacillations. Cannot be E-region dynamo due to lack of current divergence... Zonal asymmetries in conductivity? *(Liu et al., 2010)*

F-region ionosphere responds strongly to short-term tidal and PW variability

Can conclusively map tropospheric & stratospheric weather into the ionosphere Radio occultation data from the COSMIC-2 constellation are a powerful tool

Framework for predictability

SSW, NAM, MJO can all be predicted ~1-2 weeks in advance; ML approaches!?

Coupling numerical weather forecast models with whole atmosphere models would open a pathway for ionospheric predictability during low solar activity

VLEO predictability remains a challenge

Tides (and presumably PWs) have a big impact on orbits

No constellations, reliance on assumptions or statistical approaches

Generous support from NASA (HSR, HGIO, LWS) and NSF (ANSWERS) is acknowledged.