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lonospheric Plasma Physics: Spatial
Inhomogeneities and Instability

Large scale, dense regions of
plasma form in cusp region, break

up into ~100 km structures (patches) density plasma
due to transient reconnection, and bubbles form from a
undergo unstable cascade, due to Rayleigh-

Taylor type instability
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Electron in a magnetic field

Electron in an electric and magnetic field
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Electron in an electric and magnetic field,
subject to atmospheric collisions
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(Some) Structures and Instabilities:
Conceptual Approach + Linear Theory

Governing Equations
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Drift Instabilities Due to Conductance Variations
gradient drift instability (GDI)
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Drift Instabilities Due to Conductance Variations
gradient drift instability (GDI)

Strong F-region ionospheric
density gradients can

low ne :
cascade into smaller-scale
Eo “finger-like” structures when

drifts




Rayleigh-Taylor Instability: Plasma Bubbles

Perturbation
density contour
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Kelvin Helmholtz (KHI)

Fluid inertia plays a central role In
destabilizing perturbations in an
ordinary fluid

In the iIonospheric F-region inertia is
provided by the ions through
polarization drifts (cf. Kintner and
Seyler, 1985). In the ionospheric case
finite conductivity tends to break up
vortices in the nonlinear stage and finite
inertia implies finite conductivity.

Shear (inertial) Instabilities

Increasing density
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Movies courtesy Andreas Kvammen




Inertial Connections to Electrostatic
Destabilization a a
Jp01=cm<at | V-V>E= (¢, B) X (a‘; | V-VV)

Initial state Perturbation Inertial Term Polarization Current
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Structures and Instabilities: nonlinear
behavior



large scale (viz. eddies/stirring)

A integral scale
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* Kintner and Seyler, (1985) present analogues 5} |
between plasma and neutral fluid turbulence -
steady exchange of energy between unstable
modes resulting in a well-defined spectrum of 4
fluctuations.
I | —
* Breaks in the spectral slope may be attributable A', f r
. I kr  kx  (Kolmogorov scale)
to physical processes, e.g. standard Kolmogorov log &

picture.

» Having turbulent spectrum is only part of the (GDI growth) — (diffusive decay)

information necessary to understand density 0.015-
structuring - transients matter

0.0101
* Nonlinear codes are extremely useful ways to ~ 0.005]
study the transition between linear behavior and 2 oo
turbulence; however, they can be time- '
consuming due to resolution requirements ~0.005
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lllustration based on Lamarche et al (2020)



Time variability effects
Physical Processes at e
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Modeling Plasma Fluid
Instabilities

Gradient-drift
instability
(GDI)

 Models are useful tools for capturing

. _ -100 0 100
nonlinear behavior
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* Polar cap patches are interchange

unstable and cascade to smaller scales 50

* Shear layers can overturn and break

 Equatorial plasma bubbles steepen, \

bifurcate, and merge.

Kelvin-
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instability (KHI)
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® These simulations are high simplified 100 ’ +00

“wave-in-a-box” type simulations with
parameters basically chosen to
aggressively develop turbulence — they
are not really “realistic”

600
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* GEMINI (local, nonlinear, ionospheric 400 |

model) examples: https://github.com/
gemini3d/gemini-examples/tree/main/init/
CEDAR2024
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Global Navigation
Satellite Systems

Impact of Small-
Communication/ (GRS, QZ5S, etc.)“;é

Broadcasting Satellites Cq
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* One important aspect of ionospheric
dynamics is the effects on radio
propagation through variations in LR N\
refractive index (refraction and onospheric Storm )
diffraction) PRR———

* HF (tens of MHz) refraction, e - by regl o
scattering, and absorption L @

 VHF - L band (~1 GHz) scintillation
and loss of lock
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* Implications for positioning and
navigation systems

FM/Community Radios
Marine Radio HF Communication/Broadcast

rp & A/Ahp & 800 m  (VHEF)

https://swc.nict.go.jp/en/knowledge/quide.html



