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Ionospheric Plasma Physics:  Spatial 
Inhomogeneities and Instability
Large scale, dense regions of 
plasma form in cusp region, break 
up into ~100 km structures (patches) 
due to transient reconnection, and 
undergo unstable cascade,

dense dayside plasma

Cusp + region 
of scintillation

polar cap plasma patches

Moen et al (2013)

Post-sunset low 
density plasma 

bubbles form from a 
due to Rayleigh-

Taylor type instability

Data courtesy Keith Groves

Huba et al (2008)Equatorial plasma bubbles



Earth’s 
Ionosphere
• Ionosphere - ionized portion of the 

upper atmosphere ~100-300 km 
altitude


• Produced by solar EUV and soft X-ray 
radiation (~80-200 km altitude)


• Vertical structure controlled by diffusion 
(through atmosphere) along field line


• Horizontal structure often due to 
neutral motions and electromagnetic 
forces


• Ionosphere is a weakly ionized plasma, 
i.e. it in embedded in a relatively dense 
atmosphere!
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Ionospheric Motions 
Perpendicular to B
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Ionospheric Collisional Electric Currents
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(Some) Structures and Instabilities:  
Conceptual Approach + Linear Theory

∂n
∂t

+ ∇ ⋅ (nv) = 0

∇ ⋅ J = 0

v ≈
E × B

B2

E = − ∇Φ

Governing Equations

Linearization

Zero-order 
(background) 

conditions

“Constitutive” 
relation 

specifying J

Fourier 
Decomposition of 

first-order variations

Dispersion relation:  
complex freq. —> 

growth/decay



Drift Instabilities Due to Conductance Variations
 gradient drift instability (GDI)
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Drift Instabilities Due to Conductance Variations
 gradient drift instability (GDI)
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Strong F-region ionospheric 
density gradients can 
cascade into smaller-scale 
“finger-like” structures when 
subjected to background 
drifts
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Rayleigh-Taylor Instability:  Plasma Bubbles
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Kelvin Helmholtz (KHI)

Fluid inertia plays a central role in 
destabilizing perturbations in an 
ordinary fluid

In the ionospheric F-region inertia is 
provided by the ions through 

polarization drifts (cf. Kintner and 
Seyler, 1985).  In the ionospheric case 

finite conductivity tends to break up 
vortices in the nonlinear stage and finite 

inertia implies finite conductivity.

Shear (inertial) Instabilities
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Inertial Connections to Electrostatic 
Destabilization

ω = i
ν̃
2

± i
ν̃2

4
+ k2v2

0 (1 −
v0

vn )Linear growth rate (infinitesimal 
boundary layer width):  

Jpol = cm ( ∂
∂t

+ v ⋅ ∇) E = (cmB) × ( ∂v
∂t

+ v ⋅ ∇v)



GEMINI
Irregularities

(Gradient Drift Instability)
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Spectra and 
“Turbulence”
• Kintner and Seyler, (1985) present analogues 

between plasma and neutral fluid turbulence -  
steady exchange of energy between unstable 
modes resulting in a well-defined spectrum of 
fluctuations.  


• Breaks in the spectral slope may be attributable 
to physical processes, e.g. standard Kolmogorov 
picture.  


• Having turbulent spectrum is only part of the 
information necessary to understand density 
structuring - transients matter 

• Nonlinear codes are extremely useful ways to 
study the transition between linear behavior and 
turbulence; however, they can be time-
consuming due to resolution requirements

(viz. eddies/stirring)

(Kolmogorov scale)

(Cascade 
through 
inertial 

instabilities)

Illustration based on Lamarche et al (2020)

(GDI growth) — (diffusive decay)



Pedersen drifts (scale independent)

Potential mapping (~100-1000 m)
Inertial effects (~1-4 km)

Diffusive drifts (~100-300 m)
Diamagnetic drifts (~50-300 m)

Scale sizes perp-to-B for physics to start to matter 
(e.g. Farley, 1959; Kintner and Seyler, 1985)

Physical Processes at 
Small Scales

Scales based on basic 
dimensional analyses, E.g.

Time variability effects 
on polarization charge

Jpol

Jconduct
≈

ω
ν̃

= 1 when τ ≈
2π
ν̃

≈ 15 s

Shearing effects on 
polarization current

Jpol

Jconduct
≈

kv
ν̃

= 1 when λ =
2πv

ν̃
≈ 3.5 km

Pressure effects 
(diamagnetic/diffusive)

Jpressure

Jconduct
≈ k

kB

q
T
E

= 1 when λ = 2π
kB

q
T
E

≈ 100 m

Jdisplacement

Jconduct
≈ ( σ

ϵ0ω )
−1

Electric field mapping

λ∥

λ⊥
≈

σ∥

σ⊥
= 1 (alt . dep.)



• Models are useful tools for capturing 
nonlinear behavior


• Polar cap patches are interchange 
unstable and cascade to smaller scales


• Shear layers can overturn and break


• Equatorial plasma bubbles steepen, 
bifurcate, and merge.


• These simulations are high simplified 
“wave-in-a-box” type simulations with 
parameters basically chosen to 
aggressively develop turbulence — they 
are not really “realistic” 

• GEMINI (local, nonlinear, ionospheric 
model) examples:  https://github.com/
gemini3d/gemini-examples/tree/main/init/
CEDAR2024 

Modeling Plasma Fluid 
Instabilities

Noise-seeded EPBs:  ne
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Impact of Small-
Scale Plasma 
Structures
• One important aspect of ionospheric 

dynamics is the effects on radio 
propagation through variations in 
refractive index (refraction and 
diffraction)


• HF (tens of MHz) refraction, 
scattering, and absorption


• VHF - L band (~1 GHz) scintillation 
and loss of lock


• Implications for positioning and 
navigation systems

https://swc.nict.go.jp/en/knowledge/guide.html

rf ≈ λhF ≈ 800 m (VHF)


