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Geospace in the modern era



Growth in 

data volume

As of Feb 2016: 91TB of holdings; 23 current spacecraft: ~130 past. 
Monthly ~6TB are served (~730k files). To add:  MMS to be made 
public 3/1/2016. Van Allen Probes, Cluster WBD, etc. 

How do we extract “science” (specification? prediction? insight/ 
intuition? set of equations?) from big data volumes 

•
–

Growth in SPDF Archive Over Time

Dominant data flow is Van Allen Probes and starting 3/1/2016, MMS.
Significant current data from Cluster WBD instrument, as well as more 
comprehensive archival data are coming on line e.g. from TIMED.



What are we 

doing now?

Whistler-mode wave (hiss) 

distribution, showing 

geomagnetic control and 

local time asymmetry

How would this 

distribution change with 

10x, 100x, etc. more data?

Author et al. [2004]

Same Author et al. [2018]



What should we be doing?

1. Be able to “exploit” archived data, i.e., extrapolate what past mission 

data would look like for a current event or case study

2. Make sense of large (and increasing) volumes of data currently being 

collected, e.g., petaByte data-sets cannot be analyzed in the “usual 

way”

3. A model that “improves” the more data is added, i.e., if data quantity 

increases 10x, model should be able to improve its temporal and spatial 

resolution and pick up more subtle patterns or trends in behavior

4. Take full advantage of distributed arrays of instrumentation collecting 

simultaneous, homogeneous, i.e., don’t treat multi-spacecraft 

(distributed array) data as a sum of individual satellites (instruments)!



Goal: Given a set of sparse measurements of quantity Q, 

at location r and time t, reconstruct Q over all r at any t 

• What is Q? Any quantity that can be measured, for example on a satellite, 
and there are a large number of observations.

• Examples I’ll show now:
1. Electron number density: Use THEMIS density data (from S/C potential) June 

2008 – Oct 2014, TH-A, D, E in 5-min cadence (~106 samples) 

2. Energetic electron fluxes: Use Relativistic Electron Proton Telescope (REPT) 
data, Oct 2012-Oct 2014, 8 energy channels: 1.8 MeV-7.7 MeV

3. Chorus wave intensity: upper and lower band waves, measured on THEMIS 
and RBSP, ~372k samples, May 2010-June 2014.

4. Hiss wave intensity: RBSP data, Oct 2012-Sep 2014, 280k samples.

• Regressed against a time history of a geomagnetic index at 5 min cadence
– usually symH, occasionally AE,  time history of 5-10 hours

– Why geomagnetic index (and not SW)?  Because it is simple, readily available, 
unlike SW which often has gaps, and should contain all the information in the 
SW.

– “historic” (following SAMI3 model), but we will include in later versions.

What could we be doing?



Neural network approach

• Use a “deep” neural net architecture with 2 hidden layers. Why deep NN?
– NN: t is a universal approximator, even with 1 layer [Hornik et al. 1989; Cybenko, 1989] 

– Deep: Don’t need to know the feature set a-priori, deep architecture is more efficient and 
learns its own optimal feature set

– First layer: dimensionality reduction, optimal feature construction

– Second layer: more complex representations

– Sigmoid activation function in hidden layers, linear in output layer

• Does it have to be a neural net? No! Just need a high variance model (SVM, HMM, 
etc.) and LOTS of data [Banko & Brill, 2001]

• Divide data into 3 parts: Training (70%), Validation (15%), and Test (15%)

• Continue “training” the neural net until error on validation set increases for 10 
consecutive times, pick minimum error point.  Use Scaled Conjugate Gradient or 
Levenberg-Marquardt method to optimize. 

• Object is to pick the most generalized representation without over-fitting



Reconstruction of 3D plasmasphere

Equatorial Electron number density:  5-min resolution electron density 
from THEMIS A, D, E probes, 2008-06-01 to 2014-11-30.

Inputs:  L,  sin(MLT), cos(MLT), MLAT, 5-65: AL index in 5 min resolution 
for the previous 3 hours, 66-114: symH index in 30 min resolution for the 
previous 24 hours. Architecture: [20 10]; Perform: factor of ~1.5, r – 0.957

3D Electron number density:  5-min resolution electron density from   
ISEE, CRRES, POLAR, and IMAGE.  L~1-11, MLAT: -50  to 50 deg, all MLT, 
1977-2005 resulting in 217,500 data points. R~0.954



Approach is general: can be applied to any 

quantity: hiss and chorus waves 

Whistler-mode chorus waves

Upper band (0.5-0.8 fce) and lower band (0.1-
0.5 fce) waves, measured on THEMIS and 
RBSP, ~372k samples, May 2010-June 2014.

Plasmaspheric hiss waves
Van Allen Probes data, EMFISIS 0.1-2 kHz 
Bw; Oct 2012-Sep 2014, ~280k samples.
Regressed on 10-hrs of sym-H



Relativistic electron (MeV) fluxes

• REPT data: 8 energy channels 1.8, 2.1, 2.6, 3.4, 4.2, 5.2, 6.3, 7.7 MeV

• Regressed on 10 hours of Dst only

• Small number of samples, ~188k in total.  Artifacts show up in higher 
energy channels since few accelerations reach those energies!



Application 

in modeling 

boundary 

and driving 

conditions

“Learned” chorus and hiss wave environments can be used as an input to 
(physics-based) Fokker-Planck models to predict ~MeV flux, i.e., use 
data-rich environment to map into data-starved environment.



Insight 

discovery: low 

L-shell density 

enhancements

• DEN3D (3D neural net density 

model) discovered enhancement 

at low L-shells in associationed

with substorm injections

• Verified by independent satellite 

and modeling measurements



Summary

• Scientific data growing: new approach needed to extract “science”.

• We presented a “unified approach to inner magnetospheric state prediction” 

Bortnik et al., [2016] JGR

• Take a set of observations of some quantity Q measured at (r, t), and 

reconstruct Q at all r as a function of t.  Q can be anything, e.g., density, 

energetic particle fluxes, and different wave modes.

• Preliminary results show excellent agreement (R~0.8-0.9) between model 

and data, the “physics” are baked into the model and need to be interpreted 

(the data deluge does NOT make the scientific method obsolete, cf Chris 

Anderson WIRED magazine), e.g. 

– 3D plasmaspheric density model, evolves on 5 min cadence

– Hiss and chorus 3D wave fields  

– REPT (~MeV) fluxes cannot be learned directly: data starved environment, need to 

translate from data rich (waves, keV particles) to data starved environment.

• For specification models, input to physical models, insight discovery  



THE END



Summary

• Geospace in the modern era is exciting!  

– Unprecedented observational resources and data

– Space weather is becoming an increasingly important 

consideration for our modern, technological society.

• We have made key contributions to our field in 

understanding the interconnectedness of waves, wave-

particle physics, and machine learning

• Many questions remain that are of scientific importance 

and societal interest.

• A key area of expansion is in the exploitation of large, 

heterogenous datasets to extract insights, fundamental 

physics, and achieve specification/prediction.



Looking for fundamental physics

• Blah



Big data/Machine learning

• What it is:
A collection of algorithms that are able to autonomously 

‘learn’ or infer subtle patterns in data without being 

explicitly programmed to do so.  

• What it is not:
It is not a substitute for measurement, modeling, or 

physical understanding, e.g., “The End of Theory: The 

Data Deluge Makes the Scientific Method Obsolete, by 

Chris Anderson [WIRED, 2008/6]”.  It acts as a 

complement, discerning patterns in large volumes of data 

that cannot be achieved with the naked eye.   



Background on neural 

network models

• McCullough and Pitts neuron model, 1943 “perceptron”

• Replicates biological neuron

• Uses a simple step thresholding function 

• Problem with convergence of the learning rule (step discontinuity)



General neuron model

vk= [bk=1, x1 … xm][wk0 … wkm]T

yk= Φ(vk) = 1/(1 + exp[-vk]) 

Learning by gradient descent



Neuron “networks”

• Connect individual neurons together to form a network. 


