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As of Feb 2016: 91TB of holdings; 23 current spacecraft: ~130 past.

Monthly

~6TB are served (~730k files). To add: MMS to be made

public 3/1/2016. Van Allen Probes, Cluster WBD, etc.

How do we extract “science” (specification? prediction? insight/
Intuition? set of equations?) from big data volumes



Equatorial Plasmaspheric Hiss
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What should we be doing?

Be able to “exploit” archived data, I.e., extrapolate what past mission
data would look like for a current event or case study

Make sense of large (and increasing) volumes of data currently being
collected, e.g., petaByte data-sets cannot be analyzed in the “usual

29

way

A model that “improves” the more data is added, I.e., if data quantity
Increases 10x, model should be able to improve its temporal and spatial
resolution and pick up more subtle patterns or trends in behavior

Take full advantage of distributed arrays of instrumentation collecting
simultanecous, homogeneous, i.e., don’t treat multi-spacecraft
(distributed array) data as a sum of individual satellites (instruments)!




What could we be doing?

Goal: Given a set of sparse measurements of quantity Q,
at location r and time t, reconstruct Q over all r at any t

«  What is Q? Any quantity that can be measured, for example on a satellite,
and there are a large number of observations.
* Examples I’ll show now:

1. Electron number density: Use THEMIS density data gfrom S/C potential) June
2008 — Oct 2014, TH-A, D, E in 5-min cadence (~10° samples)

2. Energetic electron fluxes: Use Relativistic Electron Proton Telescope (REPT)
data, Oct 2012-Oct 2014, 8 energy channels: 1.8 MeV-7.7 MeV

3. Chorus wave intensity: upper and lower band waves, measured on THEMIS
and RBSP, ~372k samples, May 2010-June 2014.

4. Hiss wave intensity: RBSP data, Oct 2012-Sep 2014, 280k samples.
« Regressed against a time history of a geomagnetic index at 5 min cadence
— usually symH, occasionally AE, time history of 5-10 hours

— Why geomagnetic index (and not SW)? Because it is simple, readily available,
unlike SW which often has gaps, and should contain all the information in the
SW.

— “historic” (following SAMI3 model), but we will include in later versions.



Neural network approach
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Use a “deep” neural net architecture with 2 hidden layers. Why deep NN?
— NN: tis a universal approximator, even with 1 layer [Hornik et al. 1989; Cybenko, 1989]

— Deep: Don’t need to know the feature set a-priori, deep architecture is more efficient and
learns its own optimal feature set

— First layer: dimensionality reduction, optimal feature construction

— Second layer: more complex representations

— Sigmoid activation function in hidden layers, linear in output layer
Does it have to be a neural net? No! Just need a high variance model (SVM, HMM,
etc.) and LOTS of data [Banko & Brill, 2001]
Divide data into 3 parts: Training (70%), Validation (15%), and Test (15%)

Continue “training” the neural net until error on validation set increases for 10
consecutive times, pick minimum error point. Use Scaled Conjugate Gradient or
Levenberg-Margquardt method to optimize.

Object is to pick the most generalized representation without over-fitting



Reconstruction of 3D plasmasphere

Equatorial Electron number density: 5-min resolution electron density

from THEMIS A, D, E probes, 2008-06-01 to 2014-11-30.

Inputs: L, sin(MLT), cos(MLT), MLAT, 5-65: AL index in 5 min resolution

for the previous 3 hours, 66-114: symH index in 30 min resolution for the
previous 24 hours. Architecture: [20 10]; Perform: factor of ~1.5, r — 0.957
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3D Electron number density: 5-min resolution electron density from

ISEE, CRRES, POLAR, and IMAGE. L~1-11, MLAT: -50 to 50 deg, all MLT,
1977-2005 resulting in 217,500 data points. R~0.954
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Approach Is general: can be applied to any
guantity: hiss and chorus waves

Plasmaspheric hiss waves
Van Allen Probes data, EMFISIS 0.1-2 kHz

Whistler-mode chorus waves

Upper band (0.5-0.8 fce) and lower band (0.1- : M
0.5 fce) waves, measured on THEMIS and Bw; Oct 2012-Sep 2014, ~280k samples.
RBSP, ~372k samples, May 2010-June 2014. Regressed on 10-hrs of sym-H
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Dst [nT]

Relativistic electron (MeV) fluxes
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REPT data: 8 energy channels 1.8, 2.1, 2.6, 3.4,4.2,5.2,6.3, 7.7 MeV
Regressed on 10 hours of Dst only

Small number of samples, ~188k in total. Artifacts show up in higher
energy channels since few accelerations reach those energies!



Observation Simulation

L
L

Application
In modeling
boundary
and driving
conditions

L
L

L

L

P o N B s N O R NOO MW B YW B N NW B N RN B N W B Oy
L

bW o AN RW R N W R YW R iYW R N W R N RNW R N NW R Oy
UL T T T 1T

6.30 MeV  2.60 MeV I.SOIE\/IGV 0.75 MeV  0.59 MeV
MeV 2.60MeV 1.80 MeV 0.75 MeV 0.59 MeV

Ml

— —
=
o
N
= 10?2
w B 1/-:/\)
V) 23 THo &
A 30 14-1 5
() S 2km) 122
¥ f8o = :.% o
= 40 = ] 2
O — — = 0 1
5 20 2 3C {14172
Io s 3 'y ;
60 g2 =
o e :.1 <
E»J o OA C 1110 ;gﬂ
© 3 1M1
lo & 3 . ‘ ‘ 1022
02 04 02 04

2013 Ma(;?:h 2013 Mar?h
“Learned” chorus and hiss wave environments can be used as an input to
(physics-based) Fokker-Planck models to predict ~MeV flux, I.e., use
data-rich environment to map into data-starved environment.
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Summary

Scientific data growing: new approach needed to extract “science”.

We presented a “unified approach to inner magnetospheric state prediction”
Bortnik et al., [2016] JGR

Take a set of observations of some quantity Q measured at (r, t), and
reconstruct Q at all r as a function of t. Q can be anything, e.g., density,
energetic particle fluxes, and different wave modes.

Preliminary results show excellent agreement (R~0.8-0.9) between model
and data, the “physics” are baked into the model and need to be interpreted
(the data deluge does NOT make the scientific method obsolete, cf Chris
Anderson WIRED magazine), e.g.

— 3D plasmaspheric density model, evolves on 5 min cadence

— Hiss and chorus 3D wave fields

— REPT (~MeV) fluxes cannot be learned directly: data starved environment, need to

translate from data rich (waves, keV particles) to data starved environment.

For specification models, input to physical models, insight discovery



THE END



Summary

Geospace In the modern era is exciting!
— Unprecedented observational resources and data
— Space weather i1s becoming an increasingly important
consideration for our modern, technological society.
We have made key contributions to our field in
understanding the interconnectedness of waves, wave-
particle physics, and machine learning

Many gquestions remain that are of scientific importance
and socletal Interest.

A key area of expansion Is In the exploitation of large,
heterogenous datasets to extract insights, fundamental
physics, and achieve specification/prediction.



_ooking for fundamental physics
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Big data/Machine learning

e What It IS:

A collection of algorithms that are able to autonomously
‘learn’ or infer subtle patterns in data without being
explicitly programmed to do so.

 \What 1t Is not:

It is not a substitute for measurement, modeling, or
physical understanding, e.g., “The End of Theory: The
Data Deluge Makes the Scientific Method Obsolete, by
Chris Anderson [WIRED, 2008/6]”. It acts as a
complement, discerning patterns in large volumes of data
that cannot be achieved with the naked eye.
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Background on neural
network models
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McCullough and Pitts neuron model, 1943 “perceptron”
Replicates biological neuron

Uses a simple step thresholding function

Problem with convergence of the learning rule (step discontinuity)



General neuron model
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Neuron “networks’
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* Connect individual neurons together to form a network.




