Space Weather Observatory Network: Science Topics and Motivation

Aaron Ridley

How to make "progress"

- In order to make progress on something, there needs to be a goal
- What is the goal?
 - Better understand the near-Earth space environment?
- How to quantify "understand"
 - Space weather gives us a good way to quantify our ability to predict the environment
 - Is the ability to predict a good proxy for understanding?
 - By codifying our knowledge in models, we express our understanding
 - There are a lot of caveats in this, since models are not just equations, but are grids and numerics and all sorts of other stuff.

Space Weather

- The National Science Foundation is tasked with improving our understanding of space weather
 - Does not include actually doing space weather operations
 - Or even making operational models
 - But, understanding the basic science behind space weather
- Our goal aligns with this goal
 - We want to better understand the basic science behind space weather that enables more accurate prediction of different phenomena
 - Can we quantify this improvement in understanding?

Science Topics to Address

• Aurora

 While this is not one of the Space Weather objectives, it is one of the most visible aspects of our field.

• Thermospheric Expansion

 As the atmosphere expands, satellite drag changes, which then can change the probability of collision between objects.

Ionospheric Disturbances

- Structures in the ionosphere cause radio waves propagation changes and signal loss.
- Geomagnetically Induced Currents
 - Electromagnetic induction caused by large disturbances can drive strong currents in power lines and pipeline, causing failures and degradation.

Science Topics to Address - 2

• Aurora

- What processes control the location, strength, and dynamics within the aurora?
- Thermospheric Expansion
 - What processes control the thermospheric absorption and dissipation of energy and momentum?
- Ionospheric Disturbances
 - What processes create small-, meso-, and large-scale structure in the ionosphere?
- Geomagnetically Induced Currents

 What processes cause large dB/dt on the ground?

Why These Topics?

- Balance between magnetosphere and ionosphere/ thermosphere communities
 - Aurora and GICs are fundamentally GEM topics
 - Ionospheric disturbances and thermospheric expansion are CEDAR topics
- Societal relevance
 - There is basic science to understand
 - Findings can probably be used to improve space weather predictions
 - Congress has called on NSF to address these topics explicitly
- Instrumentation that leads to better understanding of one topic may lead to understanding of other topics
 - Possibly significant overlap in instrumentation needed to make progress in these topics
 - Specifically did not include solar component, since instrumentation would probably be very different

Objectives for Each Topic

- Define the goals of prediction
 - What do we really want to predict for each topic?
- Determine what gaps in our knowledge must be filled to enable understanding and predictive simulation ability
 - What do we not know or understand?
- Determine data-model fusion advances needed for specification and improved prediction
 - Data assimilation? Bias removal? Parameter specification?
- Determine what observations are necessary to provided the basis for understanding and model improvement
 - What measurements will allow us to gain understanding and prove that by codifying it?
- Define the instrumentation necessary and the placement of those instruments to provide those observations
 - Do we need to create new instruments? Chains of instruments?
 What do we need to do to actually make a real difference?

Discussion

- Are these appropriate science topics?
 - Aurora, Ionospheric Disturbances, GICs, Thermospheric Expansion
 - Basic science behind space weather?
 - Quantification of progress through modeling?
- Are these appropriate objectives?
 - Goals of prediction, ID gaps in knowledge, datamodel fusion, ID observations, ID instruments and placement