

Observational aspects of the IT energy budget at the multi-scales

O. P. Verkhoglyadova, X. Meng, A.J. Mannucci (1), R. McGranaghan (1, 2)

¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

²University Corporation for Atmospheric Research (UCAR), Boulder, USA

Copyright 2018. California Institute of Technology. All Rights Reserved. Sponsorship of NASA Heliophysics Division.

Sources for the energy budget

source	Spatial scales			Temporal scales		
	Large	Meso	Small	Large	Meso	Small
	>500km	150-500	<150km	>15min	1-10 min	~min –
						10s sec
Measurements and data			coverage		campaigns	
assimilation (AMIE,						
POES & DMSP, ISR,						
SWARM, rockets,						
TIMED/SABER)						
Empirical models					statistical	
(OVATION Prime,						
Weimer05-based JH,						
Cosgrove et al., 2011,)						
Global Circulation Models			drivers?		event-	dynamic
or physics-based modeling					based	effects?
(TIEGCM, GITM,)						

* Scale range definitions can vary for different physical parameters (in reference to particles, fields, currents).

Relevant empirical models

- Auroral heating: OVATION Prime (Newell et al., 2009); TIMED/GUVI model (Zhang & Paxton, 2008)
- Joule heating: Northern hemisphere (Knipp et al., 2005); based on W05 (Weimer, 2005; Rastätter et al., 2016)
- NO cooling: Thermosphere Climate Index (Mlynczak et al., 2015)
- CO₂ cooling: None
- Poynting flux: (Weimer et al., 2011; Cosgrove et al., 2014)

Features:

- Statistical parametrized models, smooth large-scale structures
- Global time series

Auroral heating across scales

Combined plots of the optical data (grey background), Ti (left) and horizontal E (right) from RISR (Perry et al., 2015)

Joule heating at mesoscale

Empirical model at 110 km altitude (*Weimer, JGR, 2005*)

AMIE reconstruction of Joule heating for 11:10 UT on 15 May 1997 (*McHarg et al., 2005*)

Eastward and northward E components measured by Sondrestrom (green) and modeled by AMIE (blue) starting 9 Jan 1997 (*Cosgrove et al., 2009*)

 \checkmark JH estimation depends on spatial and temporal resolutions of the method

 ✓ Different methods for JH estimation (neutral winds) (Thayer et al., 1998; Thayer and Semeter, 2004)

Small-scale perspective

Composite presentation of flows (arrows), Ti (contours), and auroral forms during an auroral arc activation from PFISR (*Semeter et al., 2010*)

Poynting flux at the mesoscale

Observation:

Model runs: <u>9 SWMF</u>

2_CMIT 2_LFM-MIX 1 WEIMER

8_WEIMER 1 CTIPE

2_TIE-GCM — 1_Cosgrove — 2_Cosgrove

4 OPENGGCM

DMSP

Spatial distribution of **modeled PF** (black) and derived from DMSP F16 observations (red) at ~0005UT on 6 August 2011 (*Y. Huang et al., 2014*)

-Sz from observatory file: OBS_DMSP.txt

23:55

Time

14

23:45

n

100

200

SZ or PF [mW/m^2]

Plot: CCMC

Evidence for PF in polar cap (*C. Huang et al., 2016*)

Single auroral pass on 14 December 2006 23:35 to 15 December 2006 00:10 with 10s averaged DMPS observations (*Rastätter et al., 2016*)

stackplot offset:

-30

0:05

12

16

8

Alfvénic processes: small scales

NASA SIERRA rocket mission (Klatt et al., 2005)

14 January 2002 above PFISR (<735 km) Differential electron flux (left axis) and FAC structures (right axis)

E field $\sim 100 \text{ mV/m}$

Ground-based + rocket campaign (Lynch et al., 2014): Poynting flux from MICA on 19 Feb 2012 at <325 km

Under-utilized dataset for energy budget: sounding rockets

Measurements of **ion velocity, neutral wind, and electric field** in the collisional transition region of the auroral ionosphere (Sangali et al., 2009)

From Joule II sounding rocket measurements above PFISR on 19 January 2007:

- Alfvén wave Poynting flux from SWARM (Park et al., 2017)
- Role of Alfvén waves in auroral arc dynamics at 1-10 km (Miles et al., 2018)
- Role of Alfvén waves in MIT coupling (Pakhotin et al., 2018)

Measurements/Data Assimilation

Energy channel	Data Sources
Auroral heating	NOAA-POES & DMSP datasets (Emery et al., 2006; 2008)
_	AMIE+ (Richmond and Kamide, 1988; Richmond et al., 1992; Lu
	et al., 1996) incorporates AMPERE, ground magnetometers;
	DMSP/SSUSI, SuperDARN, sounding rockets (Klatt et al., 2005)
Joule heating	AMIE+ (McHarg et al., 2005; +), radars (Thayer et al., 1998;
	Cosgrove et al., 2009; Sojka et al., 2009), sounding rockets
	(Sangalli et al., 2009)
NO cooling	TIMED/SABER: critical for estimating thermospheric cooling
CO ₂ cooling	(Mlynczak et al., 2003; 2010; 2018; Lu et al., 2010)
Poynting flux	DMSP (Huang and Burke, 2004; Knipp et al., 2011; Huang et al.,
-	2014; 2017; Rastätter et al., 2016); sounding rockets (Lynch et al.,
	2014)

Conclusions

Energy is important parameter characterizing the IT system:

- Energy estimates can give an insight into the IT response to different external driving and solar wind-magnetosphere-IT coupling mechanisms.
- Energy estimates can provide important information on completeness of an IT model.
- Energy input and dissipation at small- and mesoscales need to be analyzed and understood.