Multiscale Energetics of MI Coupling

William Lotko HAO/NCAR | Dartmouth College

- Ionospheric Alfven resonator
 - Feedback instability diverts Poynting flux powering *E*region Joule dissipation into *F*-region reactive power
 - Joule, Ohmic dissipation enhanced at IAR harmonics
- Ionospheric feedback on magnetospheric drivers
 - Hall conductance gradients | increase Joule dissipation
 - Auroral potential drops | decrease Joule dissipation

Active Ionization and Depletion

Opgenoorth et al. 2002 (also Evans 1977)

Spontaneous IAR (Feedback) Instability

Alfvénic I-T Heating: Pumped Resonator Modes

Lotko, Zhang 2018

Effects of Hall Conductance Gradients on MI Coupling 5/11

One-hour average states for steady $N_{sw} = 5/\text{cm}^3$, $T_{sw} = 8.5 \text{ eV}$, $V_x = -300 \text{ km/s}$, $B_z = -4 \text{ nT}$, and $V_{yz} = B_{xy} = 0$

Effects of Auroral Potential Drops: CPCP, Hemispheric Current 6/11

LFM global simulations

Ionospheric diagnostics

CPCP and **FACs**

- Constant conductance experiment: $\Sigma_{\rm P}$ = 5S, $\Sigma_{\rm H}$ = 0 (isolate effect of $\Delta \Phi_{||}$)
- Dayside reconnection potential is the same with and w/o $\Delta \Phi_{||}$.
- Hemispheric FAC is lower with $\Delta \Phi_{||}$ because the effective resistance in the global circuit is larger.

Effects of Auroral Potential Drops: Ionospheric Convection 7/11

Effects of Auroral Potential Drops: Joule Dissipation 8/11

Xi et al 2016

Effects of Auroral Potential Drops: Nightside Reconnection 9/11

Effects of Auroral Potential Drops: Magnetotail J-E 10/11

Ionospheric Alfvén resonator

- Enhances Joule, Ohmic dissipation at resonator harmonics
- Feedback instability (low Σ) diverts *quasistatic* Poynting flux powering *E*-region Joule dissipation into *F*-region *reactive* power

Ionospheric polarization at Hall conductance gradients

(e.g. due to enhanced precipitation) increases Joule dissipation and power supplied by magnetospheric dynamos | Moves reconnection line earthward, increases rate and exhaust flows

Auroral potential drops

- Reduce CPCP, hemispheric current and Joule dissipation
- Move x-line earthward | Enhance reconnection rate, reconnection exhaust flows and magnetotail J.E

EXTRAS

Precipitating Electron Power and Joule Dissipation

Evans 1977

Alfvénic Density Redistribution and Ionospheric Upwelling

Ponderomotive force of intense, HF IAR oscillations transports ionospheric plasma upward, creating a large-scale, bottom side density cavity. The upwelled plasma enhances the topside source of outflowing heavy ions.

Streltsov, Lotko 2008