Incoherent Scatter Radar 101

Joshua Semeter, Boston University (jls@bu.edu)
Phil Erickson, MIT Haystack Observatory (pje@haystack.mit.edu)

Prerequisites:

+ Basic electromagnetic
theory

» Basic concepts of analog

signal processing

* Some plasma physics is
helpful

» Logical and geometric
thinking (well, pick one;
very few of us can do
both).

Svyllabus:

Frequency
considerations.

Radar Cross Section

— Single electron

— Volume of electrons
SNR vs. more samples

ISR spectrum: Nyquist
approach

How the spectrum is
measured.

Some auroral zone
examples.

NSF Incoherent Scatter Radars

Jicamarca, Peru

Sondrestrom, Greenland

Advanced Modular ISR (AMISR) L




What constrains the frequency of an
Incoherent scatter radar?

ISR operates at frequencies above plasma- and gyro-frequencies,
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but not so high that collective behavior of the plasma is lost. This means the
wavelength must be greater than the Debye length

Thus the frequency must, therefore, satisfy
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In this frequency range, each electron responds independently to the impinging
field. The electrons respond independently (Born approximation), so the scattered
signal is the superposition of the Doppler shifted scatter of each electron.

The Radar Equation
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= = equivalent area of antenna
an
B = bandwidth

Fp = noise figure of receiver
G = antenna gain
k = Boltzmann's constant

L = losses
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Pavg = average transmitter power
R = range
o = radar cross section of target

t, = duration of noise

T, = ambient temperature (degrees Kelvin)

t, = time-on-target (dwell time)

T, = system noise temperature (degrees Kelvin)
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The physics is in the
“Radar Cross Section”
(RCS) denoted by o.




Radar cross sectlon single electron
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Electron is a Hertzian dlpole
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From classical EM:
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where I, = =2.82x10™ [m] is the classical electron radius.

Therefore we have o, =47(r,sin@)’ ~102sin?0 [m?]

Arrays of radiators and the
Importance of phase

Phase Amplifiers
shifters (or attenuators) Antenna
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(a) Array elements with individual
amplitude and phase control

AMISR relies on constructive interference of individual elemental radiators
to focus its beam. ISR relies on constructive interference of electron of dipole
radiators in the direction of the receiving antenna.




RCS for volume distribution of
electrons

Assume a plane-wave electric field incident on a scattering volume
with magnitude E, assumed constant within the volume. Let us
consider a monostatic radar (6=n/2). The backscattered field at the
antenna due to an electron located at position r, in the volume is
given by
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where k; = 27r/l,ada, is the wave number. The total field is the
superposition of contributions from individual electrons:
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Note that, for the purposes of computing amplitude,
the entire volume may be considered to be at a single
average range R.

Of course we cannot make that approximation in the phase term!

RCS for volume distribution of
electrons (continued)

We can rewrite the discrete sum as the integral over a differential quantity—the density.
In general, the density varies in both space and time, so we have
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This expression is a 3D spatial Fourier transform, except that the argument of
the exponential is twice the radar k-vector. If we let k=2k; we have
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The magnitude of the scattered signal is proportional to the intensity of spatial
fluctuations at %2 the wavelength (twice the wavenumber) of the radar.

Note: the mean value of the density is given by N(k=0,t), but this corresponds to
an infinite radar wavelength!

Incoherent scatter radars do not measure density directly.
They measure fluctuations in density that match the wavelength of the radar.




RCS for volume distribution of
electrons (continued)

In the literature, this is often made explicit by substituting N with AN in the
above, and using N, for “mean density”. With these variables, we can
readily obtain
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Next important observation: AN(K,t) is a random variable, so the instantaneous
power (or, instantaneous cross section) is not useful. Rather we are interested in the
mean, or expectation, value. Assuming time stationarity we obtain
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Incoherent averaging

Noise-Like Signal : SNR=infinity! ™\ ,

1

=il 0

Incoherent Integration
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C. Heinselman, 2004 CEDAR tutorial




SNR versus more samples

The essential result to this effect is from Farley, 1969:
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AP, = uncertainty in signal power
K = number of samples
noise power

0
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Once you have high SNR (P./P,>>1), all that matters is the
number of independent measurements

Sixto says:
A big radar helps, but size isn’t everything. g

Differential cross section

We are not only interested the total power, but how this power is distributed in
frequency. Let us now take the Fourier transform in time, noting that the time
appears in two places on the right hand side.
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The effect of the density fluctuation spectrum appears as an offset to the radar frequency.
Using previous developments, we obtain the differential backscatter cross section (l.e., per
unit frequency, per unit solid angle) at Doppler frequency y+@

o(wo +w)dw = 72 <|AN(k,w)|2> dw

(This is a general result, valid for many scattering problems)

Incoherent scatter radars measure fluctuations in density, not density itself.
Are these two things related? Yes....




What should {|an&k,«)*)to look like?

* Two essential theoretical approaches:
microscopic and macroscopic.

* For once in plasma physics, particle approach
and macroscopic approach agree exactly!

* Microscopic: Dressed test particle

» Macroscopic: lon-acoustic wave spectrum.
— Based on Nyquist dissipation theory
— Radar picks one component of the thermal spectrum

— Spectrum represents Landau-damped, Doppler-
shifted scatter from this component.

ISR spectrum: Nyquist approach

+ Send out a wave at @, which corresponds to
k=w,/cC.

* The back-scattered signal is Doppler shifted by
the forward and backward ion acoustic wave
matching that k-vector (or wavelength).

* The backscattered signal has peaks at
o+ kC, and o,— kC, where

ky(Te + T5)
Me + 1M1

Csl = w/ [k| =

* But not really: the wave modes are Landau
damped!




ISR spectrum: Nyquist approach

The natural density fluctuations are ion acoustic modes.
The collisionless ion acoustic wave has velocity:

kb(Te + T’z)
Me + M;

|Cs] = w/ k| =

In the absence of wave
damping, the backscattered
power spectrum would look

like this.
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ISR Power Spectrum

Landau damping affects the ion line because the ion thermal velocities are
similar to the ion acoustic speed. The degree of damping is strongly affected by
the ratio of electron and ion temperatures.
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Primary information in the spectrum
lon temperature (Ti) to ion mass (mi)
ratio from the width of the spectra

Electron to ion temperature ratio
(Te/Ti) from “peak_to_valley” ratio

*Electron (= ion) density from total
area (corrected for temperatures)

+lon velocity (vi) from the
Doppler shift

Courtesy C. Heinselman
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lon Velocity
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lon Mass
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lon Composition (O* vs. HY)
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How do we measure this
spectrum?

Could use bank of filters,
but not easy to make high-Q filters

Output

Power spectrum and autocorrelation function are Fourier transform pairs and,

SO compute autocorrelation

R(r) = jv(t)v* (t—7)dt
Ril=> %% *

In other words, just complex multiplications of the return voltage samples
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Range-time diagram
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Time

7, = Length of RF pulse
7, =SamplePeriod (typically ~ 1/10 pulselength)
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Range-time diagram
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Range-time diagram

3rd-lag AN his portion contributes to noise.
Only this portion is correlated
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Deriving lonospheric state
parameters from spectrum

Ne, Te, Ti, Vi are derived by nonlinear fitting to the theoretical model
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Evans, 1969 IEEE review
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Plasma parameters at auroral arc
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Atitude (em)

Single Pulse vs. Barker Code

2-min scan, 5-baud Barker code
40 s scan, 160 us pulse
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3-dimensional ion motion
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