Introduction to **lonospheric Radar Remote Sensing** John D Sahr **Department of Electrical Engineering** University of Washington

CEDAR 2006 huge thanks to NSF for their support

outline

- What is radar?
- Why use radar to study the ionosphere?
- What are the basics of ionospheric radar techniques?

What is radar?

- a mature acronym (lower case!) for RAdio Detection And Ranging
- the name of a class of technologies for remotely sensing point targets (like airplanes) and volume targets (like weather) by analyzing the scatter of radio wave illumination

Why use radar?

- as an alternative to *in situ* measurements (point vs. volume average)
- to probe particular parameters
- for very long observations over a fixed point on the Earth's surface

High Altitude Radar Applications

- Incoherent (Thomson) Scatter: ion composition, concentration, temperature, drifts
- Coherent Scatter (plasma turbulence): plasma physics, and convection tracer, interferometry & imaging
- MS(L)T scatter (meso-, strato-, lower thermosphere): winds & waves (MLT region very tough for *in situ*!)
- Ionosondes (not really discussed here): plasma concentration profiling (bottomside only)

From TIMED mission

http://www.timed.jhuapl.edu/WWW/science/images/00-0318-01large.gif

Radar Basics

- Amplitude Information how easy is it to detect?
- Spatial Information where is it, and how big?
- Time, Frequency Information how does it change or move?

But what is the scatter from?

• Bragg Scatter: responsible for coherent and incoherent scatter.

$$\lambda_{radar} = 2\lambda_{scatter}$$

- Sharp changes in index of refraction: meteor scatter
- Total Internal Reflection (ionosondes)

The Radar Equation

 Relates the received signal strength to transmitter power, antennas, distance, and target size

Monostatic Radar

- For many radars, the transmitter and receiver share one antenna. Such radars are said to be "monostatic."
- Almost all ionospheric radars are monostatic.
- Simpler radar equation: only G, R

$$P_r = \frac{P_t G^2 \lambda^2 \sigma}{(4\pi)^3 R^4}$$

Transmitter and Receiver

Pt

Target

Pr

σ

Signal to Noise Ratio

- The Received power Pr can seem very small ... but is it?
- Compare the received power to competing signals:
 - environmental signals/sky noise
 - system noise
 - clutter -- unwanted signals from our transmitter
 - jamming -- other transmitters

Signal to Noise Ratio (2)

- often lump everything into Tsys
- note that the clutter power scales with the transmitter power Pt
- mitigation by quieter electronics, low antenna sidelobes, careful bandwidth control, and appropriate waveforms

$$P_n = k_B T_{sys} B + k_B T_{sky} B + \alpha P_t + P_j$$

What about the target?

- The target size σ tells you how easy it is to detect
- Has units of area (bistatic radar cross section) (N.B. Physics definition of "differential cross section" is scaled "per steradian")
- Many ionospheric targets are volume scatterers ...

Scattering Cross Section

- How much target do you see (monostatic)?
 - Antenna Beam Shape
 - Range Resolution
 - Volume Scattering Cross Section σ_v has area / volume units

 $V = \Omega R^2 \ \Delta R$

$$G = \frac{4\pi}{\lambda^2} A = \frac{4\pi}{\Omega}$$

Radar Equation for Volume Targets

$$P_r = \frac{P_t A \sigma_v \Delta R}{4\pi R^2}$$

- Signal proportional to Megawatt-Hectares
- Signal proportional to range resolution
- Signal inversely proportional to R^2 (not R^4)
- … However some targets are inverse R^3, R^4, or R^8 (!)

Rough Comparison ...

Instrument	approx Pt A (MW Hectares)	Tsys+sky (K)
Arecibo	10	100
JRO	10	20,000
MH	0.3	100
Sondrestrom	0.1	100
AMISR	0.3	300 (?)
EISCAT UHF	0.1	100
EISCAT Svalbard	0.2	100
MU	0.8	10,000
MRR	0.0001	2000

Incoherent Scatter Target

- For an F peak ionization (1E12 per cubic meter), and
- At a slant range of 500 km, and
- And a range resolution of 1 km, and
- For a Millstone Hill-like transmitter + antenna ...

the scattering cross section is about the size of a pencil eraser

Range Estimation

Range is estimated from time of flight

- speed of light = $3 \times 10^8 \text{ m/s}$
- speed of radar = $1.5 \times 10^8 \text{ m/s}$
- ... or 150 km/ms

The E region is 1 ms away The F region is 3 ms away The Plasmasphere is 10 ms away

The scattered signal

- target interrogated in space-time
- antenna signal y(t) is further processed...

Range Resolution

- The antenna signal *y*(*t*) is passed through the impulse response of the receiver *h*(*t*)
- If the scatterer is a point target, then the final receiver output *z*(*t*) is the convolution of *y*(*t*) and *h*(*t*)

$$z(t) = \int_{\tau} y(t-\tau)h(\tau) \ d\tau$$

Range-Time Diagram

Range Resolution for a simple, matched pulse $h(t) = x^*(t)$

is triangular weighting of possible ranges

Radar Postulates

- Volume independence: The signal scattered from different places is statistically independent (true down to a few meters)
- **Stationarity**: The signal scattered from a particular place is statistically stationary (true down to a few seconds; perhaps a few minutes)

$$\langle s(\vec{r}_1, t_1) s^*(\vec{r}_2, t_2) \rangle = R(t_1 - t_2; \vec{r}_1) \, \delta(\vec{r}_1 - \vec{r}_2)$$

statistically stationary means that the statistics are not a function of time, not that the process is constant

Range Ambiguity

 Radar Pulses need to be far enough apart so that that all the signal has returned before the next pulse goes out:

Range Ambiguity

• If the radar pulses are too close together, then signals from different ranges will show up in the receiver at the same time:

Note that the transmitter buries some received signals

Target Bandwidth

- The target amplitude fluctuates due to target turbulence.
- The target amplitude fluctuates due to mean motion (Doppler Shift)

$$e^{-j[\omega t - k(r_0 + vt)]} \rightarrow e^{-j[(\omega - kv)t - kr_0]}$$

 $\Delta \Omega = -kv = -2\pi \frac{v}{\lambda}$ one way
 $\Delta f = -2\frac{v}{\lambda}$ two way

Time Series Analysis

 First Spectrum Estimation Idea: Periodogram: Time Series, Window, FFT, square, average.

Periodogram

- Works fine when you can sample at or above the Nyquist Rate
- Doesn't work when you cannot sample at the Nyquist Rate! (Overspread)
- (May be too much work if the target evolves slowly. (Strongly Underspread))

- For a target with total bandwidth *B*, you must IQ sample at a rate *F* exceeding *B*.
- For a target which could be as far away as Rmax, the radar pulses must be at least 2 Rmax/c apart.

 Competition between Distance and Bandwidth $B < F < \frac{c}{2R_{max}}$ Range $B\frac{2R_{max}}{----} < 1$ P(f)Doppler Spectrum Time B Nyquist = $F \min$ $T \min = 1/F \max$

- 450 MHz incoherent scatter: B 2R_max/c
 = (40 kHz)(10 ms) = 400 >> 1 overspread
- 50 MHz auroral scatter: B 2R_max/c = (1 kHz)(6 ms) = 6 > 1 overspread
- 50 MHz PMSE: B 2R_max/c = (10 Hz)(1 ms) = 1/100 << 1 underspread

- You can either get the slant range right and get the spectrum wrong (by undersampling), or
- You can get the spectrum right (from several ranges) but get the range wrong.

• Hmmm.

Weiner-Khinchine Theorem

or ... you could remember that the autocorrelation function R(*τ*) and the power spectrum P(f) are a Fourier Transform pair

$$R(\tau) = \int \exp(j2\pi f\tau) P(f) \, df$$

Idea: estimate the Autocorrelation Function first

ACF estimation

- Assemble sums of immediate products
- Handle range clutter by relying upon "Radar Postulates."
- Double Pulse; MultiPulse; Alternating Codes; Coded Long Pulse ... lovely and intricate waveforms.
- Probably the best possible waveforms are now known (!)

The Double Pulse

- Immediately multiply samples y2 and y1*
- Accumulate
 similar products
 ra
- Behold! an
 unbiased estimate
 of R(τ) for r0 only

(Interferometry)

- Interferometry works the same way in space as multipulse codes work in time.
- Collect estimates of target angular correlation function
- Then Fourier-like Transformation back to real image (i.e. power spectrum)
- Statistical Inverse Theory...

MRR interferometry

Pulse Compression

- Consider 1 MW ISR transmitter looking straight up; 3000 km pulse spacing (20 ms between pulses). Want 600 m range resolution (pulse length = 0.004 ms)
- Average Transmitter power is

Pave = (1 MW)(0.004 ms)/(20 ms) = 200 W

200 Lousy Watts from a 1 MW Transmitter!

Pulse Compression

- Q: Can we make a long, low amplitude TX pulse look like a short, high amplitude TX pulse?
- A: Yes, by using special waveforms with nice correlation properties.
- Remember: resolution is from TX waveform convolved with RX impulse response.

Barker Codes

- Binary Sequences with "almost perfect" range sidelobes
- Exist for length 2, 3, 4, 4, 5, 7, 11, 13 **only**
- They look like "chirps"
- Long "pretty good" codes can be found

Pulse Compression

- For low ambiguity targets "complementary codes" have perfect (zero) sidelobes.
- Modern practice includes sampling the TX waveform as well, to account for its imperfections: amplitude droop, chirp.
- Extremely interesting stuff!

Random Codes

- Q: "What waveforms have an autocorrelation function that looks like an impulse?
- A1: the impulse function
- A2: white noise

Long, random waveforms achieve very good pulse compression!

Random Codes

- Developed by Hagfors (radar astronomy) and Sulzer (Thomson Scatter). Performance quite similar to Alternating Codes (Lehtinen et al) but (IMHO) Random Codes are easier to understand.
- 100% duty cycle "sort of random" codes used in FM passive radar.

Passive Radar

- FM broadcasts (100 MHz) have high average power (about 50 kW)
- FM broadcasts (usually) behave like band limited white noise, with bandwidth about 100 kHz, an autocorrelation time of about 0.01 ms, for an effective range resolution of 1.5 km.

Power Spectrum in Passive Radar

High Latitude E Region Turbulence

Doppler resolution of 12 m/s; 96.5 MHz (Rock and Roll) see <u>http://rrsl.ee.washington.edu/Data</u>

In Phase/Quadrature

- Complex valued time series? Yep!
- Preserves the sign of the Doppler Shift
- Halves the Nyquist Sampling Rate (but doesn't halve the number of samples!)
- A bit of an analytic advantage with Isserliss' Theorem

IQ Receiver

- Basically, multiply received signal by complex exponential, and preserve real and imaginary parts as separate signals.
- All "digital receivers" work this way.

Thanks!

Sondre Stromfjord

and thanks NSF!

