Turning Science to Operations for the Satellite Industry

Piyush M. Mehta West Virginia University

CEDAR Workshop June 9-14, 2024

The New (Commercial) Space Economy

- The new space economy delivers space-based products and services driven by government, commercial and retail customers
 - space-based global internet services
 - near real-time surface imagery
- The number of operational objects in low Earth orbit (LEO) in expected to grow 10x over the next few years (proliferation).
 - Already near 10,000 satellites in orbit across regimes
 - Transition from High LEO to LEO and VLEO
- The (expected) rise is so steep that the US congress has made the Department of Commerce responsible for Space Traffic Management/Coordination (STM/C)
 - The US Space Command will limit its purview to DOD requirements
 - Space Policy Directive-3 of the National STM Policy aims to minimize false positives for actionable collision avoidance

Satellite Drag

- Satellite drag is a major uncertainty in LEO and impacts
 - Mission design and planning; e.g. lifetime, orbits, etc.
 - Object tracking and identification, data/track association and custody
 - Orbit determination and prediction, conjunction assessment and collision avoidance
 - Informing debris generation and mitigation; e.g. forensic analysis
 - Policy and guidelines
- Thermosphere density is the primary contributor of uncertainty
 - The upper atmosphere is a dynamic environment and system with three sources of uncertainty:
 - > driver forecast,
 - > (density) model,
 - initial (density) state or nowcast
- The secondary contributor of uncertainty is the drag or ballistic coefficient
- These uncertain parameters are commonly modeled as random processes in operations which affects covariance realism for decision-making

$$\vec{a}_{drag} = -\frac{1}{2} \rho \frac{C_D A}{m} v_{rel}^2 \frac{\vec{v}_{rel}}{|\vec{v}_{rel}|}$$

Current Operations

HASDM and Commercial Satellite Operations

- High Accuracy Satellite Drag Model (HASDM)
 - It is not actually a model but a framework
 - Empirical JB2008 as the background model; forecast with JB2008
 - Dynamically calibrated using calibration objects, mostly spheres
 - TLE catalogue for active and debris objects generated within the framework
 - Limitations: Not available; low order with limited fidelity (climatological); No Robust Uncertainty Quantification

Scientific Advances

- CHAMP/GRACE/Swarm/GOCE and others provide high-fidelity localized density measurements
- TIMED, GOLD, GDC, DYNAMIC, etc.
- Experimental Investigations
- GEOSPACE coupling

We have touted physics-based models as the next-big thing for satellite operations for over 2 decades.

- Empirical Models
 - MSIS series, Jacchia series, Jacchia Bowman series, DTM series, etc.
 - Limited fidelity/climatological
- Physics-based Models
 - WAM-IPE, TIE-GCM, GITM, WACCM-X, etc.
 - High fidelity but very difficult to accurately parameterize
 - Computationally expensive and can require significant user training

AI/ML for operationalizing physics-based ITM models (R2O)

- Emulator based on half a solar cycle of Thermosphere Ionosphere Electrodynamics-General Circulation Model (TIE-GCM) Simulation Data
 - Dimensionality reduction followed by dynamic modeling in reduced state space
 - Uncertainty quantification with ensemble approach
- Application to Thermosphere for neutral mass density
 - PCA+LSSM ROM Mehta et al. 2018
 - PCA+RNN ROPE Licata et al., 2023

PCA = Principal Component Analysis LSSM = Linear State Space Model RNN = Recurrent Neutral Network ROM = Reduced Order Model ROPE = Reduced Order Probabilistic Emulator

	Dimensionality Reduction	Dynamic Model
Linear	Principal Component Analysis (PCA)	Linear State-space Model (LSSM)
Nonlinear	Autoencoders (AE)	Recurrent Neural Networks (RNN)

amazon project kuiper

LEOLABS

5

TIE-GCM ROPE

 Emulator based on half a solar cycle of TIE-GCM Simulation Data

- Dimensionality reduction followed by dynamic modeling in reduced state space
- Uncertainty quantification with ensemble approach

TIE-GCM ROPE

Data Assimilation OSSE (PCA + LSSM ROM)

₩estVirginiaUniversity.

Thank you!

Piyush Mehta piyush.mehta@mail.wvu.edu

