

The Role of Ground-Based Observations in M-I Coupling Research

John Foster MIT Haystack Observatory

CEDAR/GEM Student Workshop

Outline

Some Definitions: Magnetosphere, etc. Space Weather Ionospheric Disturbances (M-I Coupling Effects) Class I Facilities DASI: Distributed Arrays Multi-Technique System Studies

Earth's Magnetosphere

Aurora: Energized Particles from Magnetosphere Enhance Ionospheric Conductivity within Auroral Oval

Weather in Earthspace

- Earth's Magnetosphere Ionosphere Atmosphere form a Coupled System
- The medium consists of magnetized plasmas whose dynamics are controlled by electric fields and currents
- Distributed ground-based instruments and space-based imaging are providing new perspectives and understanding
- Severe Space Weather effects arise from processes which span these upper-atmosphere regions
- A predictive capability is needed to protect our assets in space

Space Weather Effects

Space Weather: Ionospheric Scintillation (One Person's Noise Is Another's Data)

Scintillations disrupt signals important for communications/navigation systems.

Unstable plasma within the Earth's ionosphere results in irregularities in refractive index

Scintillations occur when radio waves pass through a turbulent ionosphere, reducing signal quality MIT Millstone Hill Incoherent Scatter Radar

Scanning Radar Probes Ionosphere and Space Weather Disturbances

> Radio-Wave Remote Sensing

ISR Observes Storm Enhanced Density

[Foster, JGR, 1993]

Millstone Hill IS Radar

Radars Measure Ion Velocity and Map Convection Electric Field (V ~ E x B)

Electric Field Maps Between Ionosphere and Magnetosphere

Today's Weather: NEXRAD Observations of Storm Front over N. America

Analysis & Understanding are Well Developed

Ground-Based Observations using GPS TEC Image Space Weather Storm Fronts

GPS TEC [10,150] TECu 19:30 UT March 31, 2001

[Foster et al. GRL 2002]

GPS samples the ionosphere and plasmasphere to ~20,000 km. Dual-frequency Faraday Rotation Observations give TEC (Total Electron Content)

Observations: GPS TEC

Plasmasphere & Ring Current

IMAGE EUV observations: SED Plumes accompany Plasmasphere Erosion

April 11, 2001

Footprint of Erosion Plume in the Ionosphere & Magnetosphere

CEDAR Class I Facilities

MIT Haystack Observatory

Millstone Hill Observatory

1.5

Firepond Optical Facility

Millstone Hill Radar

Modern Instruments (Radar/Lidar: AMISR)

DAST Distributed Arrays of Small Instruments GPS Receivers **Optical Imagers** Interferometers Ionosondes Scinifikition and VLF Rx Tomography Receivers Solar Observations Magnetometers Passive & Active Radar Radio Receiver • - Riometers Netiton Monitors Technology: ITR, Miniaturization O IPS Arrays **PO Opportuntitie** Each Current Monitor

DASI Overview

- The NAS Solar and Space Physics Decadal Survey has recommended that the next major groundbased instrumentation initiative be the deployment of arrays of space science research instrumentation
- DASI arrays will provide continuous real-time observations of Earthspace with the resolution needed to resolve mesoscale phenomena and their dynamic evolution
- Ground-based arrays will address the need for observations to support the next generation of space weather data-assimilation models
- The time is right for DASI: developing technology and IT systems support a new science capability

Imaging Meso-Scale Phenomena with **Distributed Observations**

UPDATED 19:54 UTC 19 NOV 04

UPDATED EVERY 3 HOURS

Persistent Themes

I Insufficient Observations

Observational space physics is data-starved, producing large gaps in our ability to both characterize and understand important phenomena. This is particularly true for Space Weather events, which often are fast-developing and dynamic, and extend well beyond the normal spatial coverage of our current sensor arrays.

2 Geospace as a System

Geospace processes involve **significant coupling across atmospheric layers** and 'altitude boundaries', as well as coupling across **multiple scale sizes** from global (1000s km), to local (10s km), to micro-scale (meter-scale and smaller).

3 *Real-Time Observations*

*E*lucidation of the fundamental coupling processes requires **continuous real-time measurements** from a distributed array of diverse instruments as well as physics-based data assimilation models.

Current Arrays: Limits on Global Coverage & Real-Time Access (e.g. GPS Receivers)

Issues: Logistics & International Participation

Digisonde Network

22h 23h

Geomagnetic coordinates

-150 100

9h

10h 11h 12h 13h

LT, min (2002.10.15 00 - 2002.10.16 00)

14h 15h 16h 17h 18h 19h

50 0 Ceast, m/s -50 -100

v1.1.4

9.5 South 54.8 Wes

Auroral Processes: Distributed Imagers (Themis)

Thermosphere-Ionosphere Coupling

Optical Imagers View Atmospheric Waves

Distributed Instruments (HF Radar: SuperDARN)

Ground-Based Imaging of Magnetosphere

SED Plumes generate Strong SuperDARN HF Backscatter April 11, 2001 (> 40 dB)

Ground-Based Observations: Polar Tongue of Ionization

Coherent Radar Backscatter: Plasma Processes and Ionospheric Variability

Intercepted Signals for Ionospheric Science

Multirole Coherent Software Radio Network

Multistatic Active and Passive Radar, Radio Scintillation Studies, RF monitoring

Cluster Computer Operational!

ISIS Array Node Assembly Has Started!

First Node Deployment to Greenbank Radio Observatory Summer 2005; Deployment Supported by MIT Lincoln Lab Multistatic Active Radar with MIT Millstone Hill Radar 140 Foot Telescope at Greenbank

DASI Report: Important Issues

- Education: Distributed instruments and R-T publiclyaccessible data provide extensive opportunities.
- State of the art IT systems will be needed to realize the DASI architecture
- SYNERGY: RT access to different types of data will enable new science arising from their combination.
- Instrument types and their Deployment should be driven by the needs of the science

Magnetosphere Ionosphere Atmosphere Coupling

