

Investigating Multi-Scale Gravity Wave Dynamics with the Complex Geometry Compressible Atmospheric Model (CGCAM)

Wenjun Dong^{1,2} David C. Fritts^{1,2}, Thoms Lund², Alan Liu¹, Adam Lund², Tyler Mixa², Ling Wang², Han-Li Liu³, Jonathan Snively²

¹Center for Space and Atmospheric Research (CSAR), Embry-Riddle Aeronautical University, Daytona Beach, FL, USA ²Global Atmospheric Technologies and Sciences (GATS), Boulder, CO, USA ³High Altitude Observatory (HAO), National Center for Atmospheric Research (NCAR), Boulder, CO, USA

> 2024.06.12 CEDAR Workshop, San Diego

Gravity Wave (GW)

GWs are oscillations in the atmosphere caused by the buoyant restoring force acting on displaced air parcels

Self-Acceleration (SA): GWs can transfer momentum to the mean flow, altering wind patterns and potentially accelerating the GWs themselves.

GW breaking occurs when their amplitude grows large enough to become unstable, leading to their collapse and resulting in turbulent mixing and energy dissipation.

Source: LASP

CGCAM Description

- ▶ Numerical Framework: Uses a finite-volume framework that ensures mass, momentum, total energy, and kinetic energy are conserved globally.
- Complex Boundaries: Handles various boundary conditions, making it suitable for simulating different atmospheric phenomena like wind shears, mountain waves, and convective plumes.
- DNS and LES: Can operate in Direct Numerical Simulation (DNS) mode to resolve all turbulent scales directly or in Large Eddy Simulation (LES) mode to simulate larger scales directly and model smaller scales.
- Tracer Variables: Models both passive and active tracer variables, useful for simulating things like PMC and airglow layer.
- > Data Assimilation: Has a mode to incorporate data from observations or coarser simulations, imposing large-scale wind and thermodynamic fields as needed.
- Computational Efficiency: Uses stretch and block grids and is optimized for efficient performance on parallel computers.

CGCAM is developed and maintained by the GATS team.

Dong et al., 2020, JGR (AGU EOS Highlight) and Fritts et al., 2020, JGR

self-

0.4

0.2

-0.2

40

60

800

600

Example 2: GW impacts on PMCs

• GWs can induce significant PMC advection, largescale transport, and sublimation, which eventually leads to voids.

Figure 14. Modeled voids (columns 1 and 2) and leading-edge phase structures and instability dynamics (columns 3 and 4) (top, see text for details) and seen in example Cloud Imaging and Particle Size (CIPS) polar mesospheric cloud (PMC) imaging (bottom). Void diameters and front lengths are ~700–800 km. D and L denote void diameter and front length, respectively.

PMC ice particle number density x-y crosssections at z = 84 km, 85 km, and 86 km

Example 3: KHI as GW source (Upscale Energy Cascade)

KHI occurs at the interface between two $\frac{100}{100}$ layers moving at different velocities.

• Strong KHI results in the emission of high-frequency (~10-20 mins) and small-scale (~20 km) GWs.

• The density-weighted amplitudes of the KHI-radiated GWs give rise to a "fishbone" structure in z-t plots.

Dong et al., 2023, GRL (AGU EOS Highlight)

Example 4: KHIs Contribute to T&K (Downscale Energy Cascade)

Tube and Knot (T&K) indicates intense turbulence.

KHI are elongated into tube-like structures by wind shear, while the KHI breaking and the resulting turbulence twist and knot the KHI into complex shapes.

- \bullet Observations revealed intense KHI including T&K dynamics in the MLT.
- \bullet CGCAM modeling has reproduced these events and been used to study T&K.
- KHI can cascade energy upward to gravity waves and downward to turbulence, significantly impacting atmospheric mixing processes .

Hetch et al., 2021, JGR; Fritts et al., 2021, JGR

• Tidal winds can modulate GW by capturing their energy and inducing bore dynamics.

• Tides cause the GW energy to oscillate in a tidal cycle, In turn, GWs can enhance tidal amplitude.

• Tidal winds can modulate GW by capturing their energy and inducing bore dynamics.

• Tides cause the GW energy to oscillate in a tidal cycle, In turn, GWs can enhance tidal amplitude.

• Tidal winds can modulate GW by capturing their energy and inducing bore dynamics.

• Tides cause the GW energy to oscillate in a tidal cycle, In turn, GWs can enhance tidal amplitude.

• Tidal winds can modulate GW by capturing their energy and inducing bore dynamics.

• Tides cause the GW energy to oscillate in a tidal cycle, In turn, GWs can enhance tidal amplitude.

Example 6: From CGCAM to CAM-NET

- well-trained CAM-NET The demonstrates excellent modeling skill in capturing GW generation and breaking.
- CAM-NET achieves these results • with speeds approximately four orders of magnitude faster than CGCAM

Transformer

Conclusions

- CCGAM is a highly parallelized and optimized compressible atmospheric simulation code. It has been used for studying GW self-acceleration, wave breaking, SGW generation, KHI, wave-wave interactions, among others.
- ➢ GW self-acceleration and breaking can be SGW sources.
- Tracer variables can serve as indicators for GW breaking and SGW generation. An important benefit of such modeling to be the ability to infer local GW forcing.
- ➢ KHI can cascade energy upward to GWs and downward to turbulence, significantly impacting atmospheric mixing processes.
- Tides can modulate GWs, causing the GW energy to oscillate in a tidal cycle. In turn, GWs can enhance tidal amplitude.
- ➤ A well-trained machine learning GW model could serve as an efficient alternative for GW parameterization schemes in GCMs.