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Gravity Wave (GW)

GWs are oscillations in the atmosphere

caused by the buoyant restoring force
acting on displaced air parcels

Self-Acceleration (SA): GWs can transfer
momentum to the mean flow, altering wind

patterns and potentially accelerating the
GWs themselves.

GW breaking occurs when their amplitude
grows large enough to become unstable,
leading to their collapse and resulting in
turbulent mixing and energy dissipation.
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Source:LASP



CGCAM Description

» Numerical Framework: Uses a finite-volume framework that ensures mass, momentum, total
energy, and kinetic energy are conserved globally.

» Complex Boundaries: Handles various boundary conditions, making it suitable for simulating
different atmospheric phenomena like wind shears, mountain waves, and convective plumes.

> DNS and LES: Can operate in Direct Numerical Simulation (DNS) mode to resolve all turbulent
scales directly or in Large Eddy Simulation (LES) mode to simulate larger scales directly and
model smaller scales.

» Tracer Variables: Models both passive and active tracer variables, useful for simulating things
like PMC and airglow layer.

> Data Assimilation: Has a mode to incorporate data from observations or coarser simulations,
1imposing large-scale wind and thermodynamic fields as needed.

» Computational Efficiency: Uses stretch and block grids and is optimized for efficient performance
on parallel computers.

CGCAM i1s developed and maintained by the GATS team.



Example 1: GW

S lf e Initial large-scale SGWs are driven by self-
e - acceleration dynamics, not by GW breaking.

 GW breaking causes strong subsequence SGW and

Accele rati ona nd acoustic GW generations at higher altitudes
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Dong et al.,2020, JGR (AGU EOS Highlight) and Fritts et al., 2020,JGR



Example 2: GW * GWs can induce significant PMC advection, large-

scale transport, and sublimation, which eventually

impaCtS On PMCS leads to voids.

Dong et al., 2021,JGR
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Figure 14. Modeled voids (columns 1 and 2) and leading-edge phase structures and instability dynamics (columns 3 and 4) (top, see text for details) and seen sections at z= 84 km, 85 kma and 86 km
in example Cloud Imaging and Particle Size (CIPS) polar mesospheric cloud (PMC) imaging (bottom). Void diameters and front lengths are ~700-800 km. D
and L denote void diameter and front length, respectively.



Example 3: KHI as

» Strong KHI results in the emission of high-frequency
G source (~10-20 mins) and small-scale (~20 km) GWs.

(Upscale En ergy + The density-weighted amplitudes of the KHI-radiated
C d GWs give rise to a "fishbone" structure in z-t plots.
ascade)
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Example 4: KHIs Contribute to T&K
(Downscale Energy Cascade)

Observation ALO ‘ CGCAM Simulation
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Tube and Knot (T&K) indicates intense turbulence.

AL 'Disc,on%i.uuous

KHI are elongated into tube-like structures by
wind shear, while the KHI breaking and the
resulting turbulence twist and knot the KHI into
complex shapes.

* Observations revealed intense KHI including T&K
dynamics in the MLT.

* CGCAM modeling has reproduced these events and
y been used to study T&K.

# + KHI can cascade energy upward to gravity waves and
downward to turbulence, significantly 1mpacting
atmospheric mixing processes .

Hetch et al., 2021,JGR; Fritts et al., 2021,JGR



Example 5: GW-Tide Interaction

* Tidal winds can modulate GW by capturing their energy and inducing bore Original Tidal Wind UO
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Example 5: GW-Tide Interaction

* Tidal winds can modulate GW by capturing their energy and inducing bore
dynamics.

 Tides cause the GW energy to oscillate in a tidal cycle, In turn, GWs can
enhance tidal amplitude.

* There is an approximately 90-degree phase difference between the tides and GW
energy. The GW is more easily captured when wind shear is large, occurring where
the wind speed 1s zero and located between the tidal peaks
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Example 6: From CGCAM to CAM-NET
* The well-trained CAM-NET

demonstrates excellent modeling -
skill in capturing GW generation ~40 mins (36 CPU cores) ~0.5s (1 A100 GPU)
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Conclusions

Y VY

CCGAM 1s a highli; parallelized and optimized compressible atmospheric
simulation code. It has been used for studying GW self-acceleration, wave
breaking, SGW generation, KHI, wave-wave interactions, among others.

GW self-acceleration and breaking can be SGW sources.

Tracer variables can serve as indicators for GW breaking and SGW
%eneratlon An important benefit of such modeling to be the ability to infer local
W forcing.

KHI can cascade energy upward to GWs and downward to turbulence,
significantly impacting atmospheric mixing processes.

Tides can modulate GWs, causing the GW energy to oscillate in a tidal cycle. In
turn, GWs can enhance tidal amplitude.

A well-trained machine learning GW model could serve as an efficient alternative
for GW parameterization schemes in GCMs.
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