

LISN – Low-latitude Ionospheric Sensor Network

A Distributed Observatory

MRI proposals

MRI proposals are for purchasing and/or developing instrumentation, that have budgets exceeding 100K, but less than 2 M. This is a total budget for the length of the proposal (1-5 years).

- There is a limit of 3 MRI applications per institution.
- No operational/management costs can be included.
- **Deadline is commonly the last week in January.**
- No funds for processing/modeling/assimilation can be included.
- No cost sharing during last 3 years.

LISN Project Description

- To install and manage the first Distributed Observatory in South America. LISN will install 40 GPS, 5 magnetometers, and 5 ionosondes.
- LISN is a distributed observatory that will nowcast the state of the Low-latitude ionosphere in terms of TEC, scintillations, TEC depletions, bottomside F-region density, and E-region density and its dynamics.
- LISN needs a near real-time assimilation that will make it possible to determine the drivers of the low latitude ionosphere: meridional winds and vertical drifts, and help develop forecast capabilities.
- The Jicamarca IS radar and FPIs (Arequipa, Carmen Alto) can be used to validate assimilation results and to conduct more complete assimilations.

LISN

LISN had its origin in the Jicamarca cluster of instruments and the need to resolve the role of E-region densities on the onset of equatorial spread F.

The proposed sensor network and data assimilation system --- essentially a distributed observatory equipped with forecasting tools --- is a response to community needs to understand the day-to-day variability of the equatorial electrodynamics and stability of the lowlatitude ionosphere and to make forecasts on a regional basis.

On July 2005 NSF awarded Boston College a MRI-ATM award for the installation of the LISN distributed observatory.

LISN Web Page (http://jro.igp.gob.pe/lisn)

Instrument selection

Complementary instruments that will provide the necessary measurements to address the LISN science issues (GPS receivers, Magnetometers, Ionosondes). Their measurements should be able to fully constrain assimilation efforts.

Latest technology and Robust instrumentation.

GPS receivers are presently used by different communities (geodesy, GPS meteorology). Crustal motion projects like:

Earthquake deformation cycle, intraplate deformation and mountain building.

Very low frequency seismic waves.

Novatel GSV4004B

- Specially designed firmware able to calculate 50 Hz amplitude and phase scintillations.
- •Receive phase and code from SBAS sat.
- •Track up to 10 GPS satellites and 3 SBAS.

Leica GMX902

- Provides 20 Hz TEC values.
- Measures amplitude and phase scintillations for L1 and L2.
- Ready for Galileo.

Fast and Precise

- Detects high-dynamic movements, data rate up to 20 Hz
- 12 L1 + 12 L2, code and phase
- SmartTrack technology for high precision

POLENET: Planned GPS field deployments

Prototype Magnetometer developed at Jicamarca

- Sensor : Triaxial ring core fluxgate.Sensor Module: PVC cylinder 0.1 x
 - 0.8 m, contains internal temperature sensor and 3 Helmholtz coils.
- Electronic unit: AGC, fields cancellation and filters, including a data logger of high resolution : 20 bits, 8 channels, USB.

- Overall Range: +/- 60,000nT.
- Dynamic Range: +/- 2000nT
- Resolution : 0.1nT
- Output: +/-2.5 VDC (analog signal)
- Digital outputs: USB, 5 output channels, X,
- Y, Z and 2 temperature sensors
- Internet data rate: 5min.

Sites selection

The World Gazetteer

* current population figures for cities, towns and places of all countries

* largest cities of the world * current national flags

Cities and Places

Current Population for Cities and Towns of Rondônia, Brazil

Page 2 of 3

	(por	oulatic	on in [1000])
--	------	---------	---------	--------

rank Place	Pop. 1996	Pop. 2000	Pop. 2004	Latitude	Longitude
1498 Alta Floresta d'Oeste	11 800	12 300	13 000	11.74°S	61.38W
Alto Alegre do Parecis		2 400	2 600		
Alto Paraíso	2 400		2 800	9.85°S	63.31°W
Alvorada d'Oeste	8 600	8 500	8 700		
386 Ariquemes	51 800	54 900	58 400	9.94°S	63.08W
1144 Buritis	5 500	15 200	17 500		
401 Cacoal	46 800	51 400	55 900	11.50°S	61.42℃
1714 Candeias do Jamari	6 800	9 400	11 200	8.79°S	63.79℃
1326 Cerejeiras	15 200	14 800	15 000		
1387 Colorado do Oeste	16 400	14 700	14 200		
Corumbiara	1 700		2 000		
1321 Espigão d'Oeste	13 600	14 200	15 000	11.58°S	60.99℃
Governador Jorge Teixeira	1 100		1 300		
609 Guajará-Mirim	31 300	33 000	35 000	10.80°S	65.37℃
707 Jaru	30 000	29 200	29 500	10.43°S	62.45°W
21 Ji-Paraná	80 800	91 000	100 800	10.90°S	61.95℃
1471 Machadinho d'Oeste	7 300	11 000	13 300	9.57°S	62.16°W
Ministro Andreazza	1 700		2 000		
Mirante da Serra	6 000		7 000		
Nova Brasilândia d'Oeste	5 900		6 800		
Nova Mamoré	6 700		7 700		
Novo Horizonte do Oeste	1 100		1 300		
753 Ouro Preto do Oeste	26 100	26 500	27 400	10.66°S	62.31℃
767 Pimenta Bueno	26 700	26 400	26 900	11.64°S	61.21°W
70 Porto Velho	238 300	273 500	306 400	8.76°S	63.91°W
1551 Presidente Médici	12 100	12 200	12 500	11.27°S	61.92°W

Operational costs per station

To pay or not to pay to the local observer. Electricity, Internet provider, phone/DSL/Internet. Total cost about 1.2 K per year per GPS station. Possible places to install small instruments: Universities, research institutes, Christians missionaries.

Human network

Countries with extended investigation (and infrastructure) on space sciences: Argentina, Brazil, and Peru

Emerging countries: Chile, Colombia, Ecuador, and Venezuela.

LISN Workshop at Jicamarca

The workshop will instruct scientists, engineers, and students from South America on:

- (1) how to employ GPS receivers and ground-based magnetometers to diagnose the state and variability of the low-latitude ionosphere.
- (2) how to install and operate a state-of-the-art sounder and simultaneously to make known the latest techniques of E and F region sounding.
- To be conducted between August 1 9 at Jicamarca.
- 21 participants from 7 countries in South America.
- Classes on: fundamentals of GPS technology, GPS data analysis, biases calculations, development of algorithms to compute TEC, TEC perturbation and S4 scintillation index. and the application of these observables to ionospheric investigations.

LISN Server

