

Properties of Electromagnetic Energy and Momentum Transfer Between the Magnetosphere and Upper Atmosphere

Art Richmond and Astrid Maute NCAR High Altitude Observatory

- Electromagnetic energy transfer on large and small scales

- Wind acceleration by Maxwell stress and feedback on plasma convection

Matsuo and Richmond (2008)

1981 September 26 1030-1055 UT Field-Aligned Poynting Flux, IMF $B_z = -5 \text{ nT}$, $B_v = 0$

Atmospheric mass ~ 10^{-3} kg/m² above 110 km

 $2x10^{-6}$ N/m² causes $2x10^{-3}$ m/s² acceleration, which produces 40 m/s wind after $2x10^{4}$ s (~ 6 hours).

Richmond et al. [2003]

Some Questions

- What are the distributions of energy and momentum flux during dynamic conditions?
- How are small-scale convection velocities related to ionospheric conductivity structures in the E and F regions?
- What is the dynamic response of winds to changing convection on different temporal and spatial scales?
- How does the magnetosphere respond to the winds?