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• Lightning-related transient luminous events [Lyons et al., 2003; Pasko, 2003].
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Sprite Spectrum

• A typical sprite spectrum is in the red region of the visible light [Hampton et al., 1996]:

[Hampton et al., 1996]

• Four major emission band systems of sprites [e.g., Mende et al., 1995; Hampton et al.,
1996; Armstrong et al., 1998, 2000; Morrill et al., 1998, 2002; Suszcynsky et al., 1998]:

Emission Transition Excitation Energy Lifetime at Quenching
Band System Threshold (eV) 70 km Alt. Alt. (km)

1PN2 N2(B
3Πg)→N2(A

3Σ+
u ) ∼7.35 5.4 µs ∼53

2PN2 N2(C
3Πu)→N2(B

3Πg) ∼11 50 ns ∼30

LBH N2 N2(a
1Πg)→N2(X

1Σ+
g ) ∼8.55 14 µs ∼77

1NN+
2 N+

2 (B2Σ+
u )→N+

2 (X2Σ+
g ) ∼18.8 69 ns ∼48
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Streamer Structure of Sprites
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• Telescopic imaging of sprites. Wide (left panel) and narrow (right panel) field of view
images of a bright sprite event [Gerken et al., 2000; Gerken and Inan, 2002, 2003].

• The transverse scales of the streamer structures observed by Gerken et al. [2000] and
Gerken and Inan [ 2002, 2003] range from 50 to 200 m.
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Recent Submillisecond Imaging of Sprite Development and Structure

• High speed sprite images (∼0.2 ms) obtained on August 13, 2005 [Cummer et al., 2006].
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Recent Submillisecond Imaging of Sprite Development and Structure

• Sprite images recorded at 10,000 fps [Stenbaek-Nielsen et al., 2007].

• Emissions from sprite streamers are confined to the streamer tip [McHarg et al., 2007;
Stenbaek-Nielsen et al., 2007].

• The high-speed video records also show that sprite streamers accelerate and expand
[McHarg et al., 2007; Stenbaek-Nielsen et al., 2007].
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Streamer Model Equations

• The dynamics of a streamer are described by the electron and ion drift-diffusion equations
coupled with Poisson’s equation in a cylindrical coordinate system [Liu and Pasko, 2004]:

∂ne
∂t

+∇ · ne~ve −De∇2ne = (νi − νa2 − νa3)ne − βepnenp + Sph

∂np
∂t

= νine − βepnenp − βnpnnnp + Sph

∂nn
∂t

= (νa2 + νa3)ne − βnpnnnp

∇2φ = − e
ε0

(np − ne − nn)

• The coefficients of the model are assumed to be functions of the local electric field and
obtained from solutions of the Boltzmann equation [Moss et al., 2006].
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Optical Emission Model

• The number densities (nk) of excited species is governed by the relation [Sipler and Biondi,
1972]:

∂nk
∂t

= −nk
τk

+
∑
m
nmAm + νkne

where τk = [Ak+α1NN2
+α2NO2

]−1 is the total lifetime of state k, Ak is the radiation tran-
sition rate, α1 and α2 are the quenching rates due to collisions with N2 and O2 molecules,
respectively, the sum over the terms nmAm represents increases in nk resulting from cas-
cading from higher-energy states, and νk and ne are excitation coefficient and electron
density, respectively.
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Simulation Domain
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12



Outline June 18, 2008

• Introduction to Sprites and Sprite Streamers

• Sprite Streamer Model

• Comparison of ISUAL Observations with Steamer Modeling

• Heating Effects of Sprite Streamers

• NO Chemistry and NO-γ Emissions

• Conclusions

13



Modeling Results for a Positive Streamer at 70 km Altitude

• Modeling results for a sprite streamer developing in an ambient field E0 = 5×N70/N0

kV/cm, where N70 and N0 are air densities at 70 km and 0 km altitude, respectively.

t = 0.53 ms
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Modeling Results for a Negative Streamer at 70 km Altitude

• Modeling results for a sprite streamer developing in an ambient field E0 = 25×N70/N0

kV/cm, where N70 and N0 are air densities at 70 km and 0 km altitude, respectively.
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Sprites Recorded by ISUAL on FORMOSAT-2 Satellite on July 18, 2004
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Lightning
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[Mende et al., 2006]
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Comparison of ISUAL Observations with Streamer Modeling

• We choose intensity ratios of 2PN2 to 1PN2, LBH N2, and 1NN+
2 as our comparison

quantities.
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• Solid line – ISUAL observations; Dashed line – Modeling results for a positive streamer;
Dashdot line – Modeling results for a negative streamer.
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Comparison of ISUAL Observations with Streamer Modeling
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• Solid line – ISUAL observations; Dashed line – Modeling results for a positive streamer;
Dashdot line – Modeling results for a negative streamer.
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Comparison of ISUAL Observations with Streamer Modeling
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• Solid line – ISUAL observations; Dashed line – Modeling results for a positive streamer;
Dashdot line – Modeling results for a negative streamer.
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Heating Model

• The heating effects of a sprite streamer are taken into account using the model proposed
in [Aleksandrov et al., 1998; Naidis, 1999]:

nN2

∂εV
∂t

=
λV
e
jE − εV − εV (Tg)

τVT(Tg)
n,

CV n
∂Tg
∂t

= (λT + λR + δλE)jE + e
εV − εV (Tg)

τVT(Tg)
n

where εV and Tg are the mean vibrational energy of N2 molecules and gas temperature,
respectively; λV is the fraction of input energy transferred to vibrational excitation of N2

molecules; λT , λR, and λE are the fractions of input energy transferred into translational,
rotational, and electronic degrees of freedom of neutrals, respectively; δ = 0.3; εV (Tg) is
the equilibrium value of εV .
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Rates and Coefficients for the Heating Model

• (a) Fractions of input energy transferred into vibrational excitation and ‘fast heating’ as
a function of reduced electric field [Hagelaar and Pitchford, 2005]; (b) The vibrational-
translational relaxation time at 70 km altitude [Mnatsakanyan and Naidis, 1986].
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Heating Effects of a Sprite Streamer

• Heating effects of a positive streamer in an ambient field E0 = 15×N70/N0 kV/cm, where
N70 and N0 are air densities at 70 km and 0 km altitude, respectively.

t = 0.34 ms
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NO Chemistry for Sprite Streamers

• Important species involved in NO chemistry: N2, O2, N(2D), O(3P ), N2(A
3Σ+

u ), NO(X2Πr),
and NO(A2Σ+)

Reaction process or index Reaction Rate Coefficient [f(E/N) denotes
function of reduced electric field]

Electron collision reactions
1 e+ N2 → e+ N(4S) + N(2D) f(E/N)
2 e+ O2 → e+ O(3P ) + O(3P ) f(E/N)
3 e+ N2 → e+ N2(A3Σ+

u ) f(E/N)
4 e+ N2 → e+ N2(B3Πg) f(E/N)
5 e+ N2 → e+ N2(C3Πu) f(E/N)
6 e+ NO(X2Πr)→ e+ NO(A2Σ+) f(E/N)

Chemical reactions
7 N(2D) + O2 → NO(X2Πr) + O(3P ) 5.20× 10−18 m3s−1

8 N2(A3Σ+
u ) + O(3P )→ NO(X2Πr) + N(2D) 7× 10−18 m3s−1

9 N(2D) + NO→ N2 + O(3P ) 6.0× 10−17 m3s−1

Excitation
10 N2(A3Σ+

u ) + NO(X2Πr)→ N2(X1Σ+
g ) + NO(A2Σ+) 8.75× 10−17 m3s−1

Quenching
11 N(2D) + N2 → N(4S) + N2 1.70× 10−20 m3s−1

12 N2(A3Σ+
u ) + O2 → N2 + O2 8.75× 10−19 m3s−1

13 N2(A3Σ+
u ) + O2 → N2 + 2O(3P ) 1.63× 10−18 m3s−1

14 NO(A2Σ+) + O2 → NO(X2Πr) + O2 1.62× 10−16 m3s−1

Radiative transition
15 N2(B3Πg)→ N2(A3Σ+

u ) + hν 1.7× 105 s−1

16 N2(C3Πu)→ N2(B3Πg) + hν 2.0× 107s−1

17 NO(A2Σ+)→ NO(X2Πr) + hν 5× 106 s−1
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Modeling Results of a Positive Streamer at 70 km Altitude

• E0 = 5×N70/N0 kV/cm, where N70 and N0 are air densities at 70 km and 0 km altitude,
respectively. The initial density of NO is set to be 2×1014 1/m3 [Atreya, Adv. Space Res.,
1, 127, 1981].
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Conclusions

The principal results and contributions of this study can be summarized as follows:

• The three intensity ratios (2PN2 to 1PN2, LBH N2, and 1NN+
2 ) obtained from streamer

modeling results generally agree with the ISUAL spectrophotometric measurements. These
ratios depend on the magnitude of the ambient field and the polarities of streamers.

• At the initial stage, the 2PN2/1NN+
2 ratio from ISUAL measurements is smaller than the

ratio obtained from the streamer modeling. This implies that the maximum electric field
driving the emissions of the sprite must be greater than ∼3Ek, which is consistent with
the conclusion drawn in [Kuo et al., 2005; Liu et al., 2006].

• Modeling results on a streamer developing for a period of 0.34 ms indicate that the per-
turbation of gas temperature is minimal and the vibrational temperature of N2 molecules
increases by several degrees K. However, the air heating by a streamer on longer time
scales may be substantially accelerated due to kinetic effects [Pasko and Bourdon, 2007].

• Chemically active species, including N2(A), O and N, are effectively produced in the
streamer discharges at the sprite altitudes.

• The NO(A2Σ+) species in sprite streamers at 70 km altitude are mostly produced by
interaction of N2(A

3Σ+
u ) species with high density (∼2 × 1014 1/m3) ambient NO(X2Πr)

molecules, leading to afterglow NO-γ emissions comparable to LBH N2 emissions.
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