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Machine Learning

In machine learning, statistical learning techniques are used to

automatically identify patterns in data. Most statistical learning

problems fall into one of two categories:

I
Supervised Learning

Learning process is guided by a set of labeled samples {xi , yi}
(training data), where xi is the predictor measurement and yi is
an associated response measurement.

I
Unsupervised Learning

No training data is used to supervise learning process.
Only {xi} is known.



Big Picture: Learning Techniques

http://scikit-learn.org/stable/tutorial/machine_learning_map/

Unsupervised Methods
• Dimensionality Reduction
• Clustering
• (Classification)



Data Dimensionality Reduction

Examples of Linear Projection Methods

I
Wavelet Compression

I
Principal Component Analysis (PCA)



Wavelet Compression

An orthonormal basis vector  2 RN⇥N
where   

T
= I



Wavelet Compression

I
Suppose x 2 RN

can be expanded to  as

x =  c

where c contains coe�cients.



Wavelet Compression

I
Compressible signals are well approximated by D-sparse

representations, meaning that only D of {ci}Ni=1

are nonzero.



Wavelet Compression



Representation of a Stochastic Process Using  

I
Suppose that x = {xn}Nn=1

is now a centered Gaussian

stochastic process.

I
Karhunen-Loéve transform

xn =

1P
i=1

ci i (n)

where coe�cients ci are independent Gaussian random

variables.



Representation of a Stochastic Process Using  

I
Suppose that x = {xn}Nn=1

is now a centered Gaussian

stochastic process.

I
Karhunen-Loéve transform
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Representation of a Stochastic Process Using  

I
In the discrete case, KarhunenLoéve transform can be

approximated as

x ⇡  c

I
Covariance of x is then

E[xxT ] ⇡  E[ccT ] T

I
The columns of  are principal components if E[ccT ] is
diagonal (close to diagonal) so that c is uncorrelated.

I
Usually principal components can be estimated from

factorization of a sample covariance, e.g., by eigenvalue

decomposition,

⌃ = V⇤V

T

where ⌃ is symmetric, V is orthogonal, and ⇤ is diagonal.
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Principal Component Analysis

I Principal components are essentially eigenvectors.

I
The Principal Component Analysis (PCA) referers to

orthogonal projection of the data onto a lower-dimensional

space spanned by these eigenvectors that maximizes the

variance of projected data.

Bishop, 2006
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PCA Example - Thermospheric Mass Density

PCA of 9-year CHAMP mass density data
I Let’s suppose that the data can be decomposed with respect

to principal components  as:

x(s, t) ⇡ c1(t) 1(s) + c2(t) 2(s) + c3(t) 3(s) + · · ·

Matsuo and Forbes, 2008
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Some Remarks on PCA

I
The PCA helps to extract a relevant representation of the

data in a low-dimensional space and select a subset of relevant

features. So, it is closely related to dimensionality reduction.

I
The problem to figure out how many components contain

physically relevant information is a open question.

I
The PCA is a linear dimensional reduction method. PCA can

be extended to nonlinear by using kernel methods.
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Clustering

Clustering refers to a very broad set of techniques for finding

subgroups, or clusters, in a data set, such that those within each

cluster are more closely related to one another than objects

assigned to di↵erent clusters.

I
Image example (2 segments or clusters)



Clustering Algorithms

I
The objective is to identify data structure such as natural

groups or clusters by measuring similarities between di↵erent

data, i.e., find a mapping operator F

F : x 2 RN 7! C 2 N

where classes C = {C
1

= 1, C
2

= 2, · · · }.

I
Clustering is Unsupervised learning (e.g., K-means,

hierarchical, Gaussian mixture models, hidden Markov models)

I
Clustering algorithms are used for unsupervised classification.
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K-means clustering

I
The objective is to assign each observation, uniquely labeled

by an integer n 2 {1, · · · ,N}, to one and one only cluster

{C
1

, · · · , CK}.
I

The total number of clusters is fixed (K < N).

I
The number of data points in the k-th cluster is Nk

I
The K-means algorithm is an iterative method that minimizes

is the within-cluster variation W (Ck):

C
1

· · · CK = argmin

KX

k=1

W (Ck)



K-means Clustering

I
The most common choice for W (Ck) involves squared
Euclidean distance, and for D-dimensional space

d(xn, xn0) = kxn � xn0k2 =
DX

j=1

(xnj � xn0j)
2

I
The within-cluster variation W (Ck) is

W (Ck) =

1

Nk

X

n2Ck

X

n02Ck

d(xn, xn0)

= 2

X

n2Ck

kxn � µkk
2

where xkj =
1

Nk

P
n2Ck

xnj and µk = {xk1, · · · , xkj} (kth cluster centroid)
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K-means Clustering Algorithm Steps

1. Randomly assign a number, from 1 to K , to each data.

2. Iterate until the cluster assignments stop changing:

I
For each of the K clusters, compute the cluster centroid µk

I
Assign each data to the cluster whose centroid is closest.

James, 2013



K-means Clustering Example

K = 19 clustering of RGB image of aurora (D = 3)



K-means Clustering Example - Solar Wind

K = 7 clustering of 10-year solar wind data (D = 7)

Heidrich-Meisner and Wimmer-Schweingruber, 2018
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Some Remarks on K-means Clustering

I
The within-cluster variation decreases with each iteration of

the algorithm.

I
The K-means algorithm finds a local rather than a global

optimum, the results obtained will depend on the initial

(random) cluster assignment.

I
The problem of selecting K is far from simple.
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Statistical Learning Techniques help you
• Manage large volumes of data by dimensionality reduction 
• Extract characteristic patterns and trends from data
• Identify the way data are naturally grouped together
• Gain scientific insights 




