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Machine Learning

In machine learning, statistical learning techniques are used to

automatically identify patterns in data. Most statistical learning
problems fall into one of two categories:

» Supervised Learning

Learning process is guided by a set of labeled samples {x;, y; }

(training data), where x; is the predictor measurement and y; is
an associated response measurement.

» Unsupervised Learning

No training data is used to supervise learning process.
Only {x;} is known.



Big Picture: Learning lechniques

Unsupervised Methods
- Dimensionality Reduction
+ Clustering
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Data Dimensionality Reduction

Examples of Linear Projection Methods

» Wavelet Compression

> Principal Component Analysis (PCA)
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Wavelet Compression

An orthonormal basis vector W € RNXN where YW’ = |
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Wavelet Compression

» Suppose x € RN can be expanded to W as
x = Wc

where ¢ contains coefficients.

256 x 256 Image



Wavelet Compression

» Compressible signals are well approximated by D-sparse
representations, meaning that only D of {c; £V=1 are nonzero.

4

256 x 256 image
gy | 10

-

AL H

sorted wavelet coefficients




Wavelet Compression

original

D-term approximation



Representation of a Stochastic Process Using W

» Suppose that x = {x,}N_. is now a centered Gaussian
stochastic process.



Representation of a Stochastic Process Using W

» Suppose that x = {x,}N_. is now a centered Gaussian
stochastic process.

» Karhunen-Loéve transform

Xp = Z c,-\lf,-(n)
=1

where coefficients ¢; are independent Gaussian random
variables.
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Representation of a Stochastic Process Using W

» |n the discrete case, KarhunenlLoéve transform can be
approximated as

x ~ Wc

» (Covariance of x i1s then

E[lxx"] ~ WE[ccT|W'

> The columns of W are principal components if Elcc’] is
diagonal (close to diagonal) so that c is uncorrelated.

» Usually principal components can be estimated from
factorization of a sample covariance, e.g., by eigenvalue
decomposition,

> — VAV/

where X2 is symmetric, V is orthogonal, and A is diagonal.



Principal Component Analysis

» Principal components are essentially eigenvectors.



Principal Component Analysis

» Principal components are essentially eigenvectors.

» The Principal Component Analysis (PCA) referers to
orthogonal projection of the data onto a lower-dimensional
space spanned by these eigenvectors that maximizes the

variance of projected data.
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PCA Example - Thermospheric Mass Density

PCA of 9-year CHAMP mass density data

» Let's suppose that the data can be decomposed with respect
to principal components W as:
x(s,t) ~ c1(t)V1i(s) + c2(t)Wa(s) + c3(t)WV3(s) + - - -
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PCA Example - Thermospheric Mass Density

PCA of 9-year CHAMP mass density data

» Let's suppose that the data can be decomposed with respect
to principal components W as:

X(S7 t) ~ Cl(t)wl(s) + C2(t)\|12(5) + C3(t)\|!3(5) + ...
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Some Remarks on PCA

» The PCA helps to extract a relevant representation of the
data in a low-dimensional space and select a subset of relevant
features. So, it is closely related to dimensionality reduction.
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Some Remarks on PCA

» The PCA helps to extract a relevant representation of the
data in a low-dimensional space and select a subset of relevant
features. So, it is closely related to dimensionality reduction.

» The problem to figure out how many components contain
physically relevant information is a open question.

» The PCA is a linear dimensional reduction method. PCA can
be extended to nonlinear by using kernel methods.



Clustering

Clustering refers to a very broad set of techniques for finding
subgroups, or clusters, Iin a data set, such that those within each
cluster are more closely related to one another than objects
assigned to different clusters.

> Image example (2 segments or clusters)

Original Image Segmented Image



Clustering Algorithms

» The objective is to identify data structure such as natural
groups or clusters by measuring similarities between different
data, i.e., find a mapping operator F

F:xcRVisCeN

where classes C={C; =1,Co =2,--- }.
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Clustering Algorithms

» The objective is to identify data structure such as natural
groups or clusters by measuring similarities between different
data, i.e., find a mapping operator F

F:xcRVisCeN

where classes C={C; =1,Co =2,--- }.

» Clustering techniques include K-means, hierarchical, Gaussian
mixture models, hidden Markov models.

» Clustering algorithms are used for unsupervised classification.



K-means clustering

» The objective Is to assign each observation, uniquely labeled
by an integer n € {1,--- , N}, to one and one only cluster

{C1,--+,Ck ]

» The total number of clusters is fixed (K < N).
» The number of data points in the k-th cluster is Ny



K-means Clustering

» The most common choice for W(Cy) involves squared
Euclidean distance, and for D-dimensional space

D
d(Xn, Xp) = ||Xn — xn’H2 — Z(an - Xn’j)2
j=1



K-means Clustering

» The most common choice for W(Cy) involves squared
Euclidean distance, and for D-dimensional space

D
d(Xn, Xp) = ||Xn — xn’H2 — Z(an - Xn’j)2
j=1

> The within-cluster variation W/(Cy) is

]. N\ N\
W(Ck) — ﬁ >4 >4 d(Xan’)
knECkn’ECk
2
= 2 %o — mul
neCy
1 - _ .
wnere X = — Xpj AN — 1 Xk1l, " 5 Xkj cluster centroil
here X = —— 3 xyy and g, = { 7} (kth cluster centroid)

k neCy



K-means Clustering Algorithm Steps
1. Randomly assign a number, from 1 to K, to each data.

2. lterate until the cluster assignments stop changing:

» For each of the K clusters, compute the cluster centroid
» Assign each data to the cluster whose centroid is closest.

Data Step 1 lteration 1, Step 2a
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K-means Clustering Example




K-means Clustering Example - Solar Wind
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K-means Clustering Example - Solar Wind

K = 7 clustering of 10-year solar

I Cluster 1, f1}=0.0z]
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Some Remarks on K-means Clustering

» [he within-cluster variation decreases with each iteration of
the algorithm.

» The K-means algorithm finds a local rather than a global
optimum, the results obtained will depend on the initial
(random) cluster assignment.



Some Remarks on K-means Clustering

» [he within-cluster variation decreases with each iteration of
the algorithm.

» The K-means algorithm finds a local rather than a global
optimum, the results obtained will depend on the initial
(random) cluster assignment.

» The problem of selecting K is far from simple.



What do These Tools do for us?
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What do These Tools do for us?

Statistical Learning Techniques help you

- Manage large volumes of data by dimensionality reduction
- Extract characteristic patterns and trends from data

- ldentify the way data are naturally grouped together

+  Gain scientific insights







