

WACCM studies of the upper atmosphere

Dan Marsh Atmospheric Chemistry Division, NCAR, Boulder, USA

Outline

NCAR

- WACCM-3 description
- A summary of current research:
 - Tides in WACCM
 - ► WACCM-X
 - PMC studies
 - Sodium Chemistry
- How to obtain WACCM
- Summary

UCAR ***** Quarterly

JNIVERSITY CORPORATION FOR ATMOSPHERIC RESEARC IATIONAL CENTER FOR ATMOSPHERIC RESEARCH · UCAR OFFICE OF PROGRAM

It's about TIME: A new upper-atmosphere model

by Carol Rasmussen

ay Roble, a senior scientist in the High Altitude Observatory, has spent the last 20 years or so creating and refining a general circulation model of the upper atmospherethe transition zone between the bulk of the atmosphere below 30 kilometers and the void above 500 km. Now, the knowledge Roble has amassed in developing his thermosphereiono-sphere-mesosphere electrodynamics general circulation model (TIME-GCM) is being incorporated into the middle atmosphere community climate model, an offspring of NCAR's CCM family that was created by Byron Boville (Climate and Global Dynamics Division). A third co-principal investigator, Rolando Garcia, and colleagues in NCAR's Atmospheric Chemistry Division (ACD) will be adding chemistry components to the model.

"A year from now, we expect to have a model that extends from the surface to 120 kilometers and includes ozone chemistry," says Boville. The yet-unnamed composite model will be one of only two or three general circulation models to reach that altitude. Some GCMs only extend to 30 km, including the

Byron Boville, Rolando Garcia, and Ray Roble. (Photo by Carlye Calvin.)

troposphere and part of the lower stratosphere; a few have been extended into the mesosphere, with upper boundaries in the range of 60–80 km. The new model will include the entire mesosphere as well as the lower thermosphere. But the plan doesn't stop there. Further into the future, the scientists will add thermoselectrically charged atoms and molecules of the ionosphere are ionized by solar radiation and aurora particle precipitation. This happens throughout the atmosphere, but in the denser air lower down, charged particles quickly bump into oppositely charged particles and recombine. In the sparsely populated ionosphere, ionized parti-

WACCM Project Goals

Develop a state of the art, "high-top", numerical model with coupled chemistry that will serve the needs of the scientific community

Conduct research to understand the coupling between atmospheric layers, the role of chemical and physical processes in defining these couplings, and the interaction between the Earth's atmosphere and the Sun

Acknowledgement

WACCM Development Contributors:

Charles Bardeen, Byron Boville, Chris Fischer, Benjamin T. Foster, Rolando R. Garcia, Andrew Gettelman, Maura E. Hagan, Charles Jackman, Douglas E. Kinnison, Han-Li Liu, Jospeph M. McInerney, Daniel R. Marsh, Astrid Maute, Aimee Merkel, Mike Mills, Liying Qian, Cora Randall, Arthur D. Richmond, Jadwiga H. Richter, Raymond G. Roble, Fabrizio Sassi, Anne K. Smith, Stanley C. Solomon, Francis Vitt

WACCM description

• WACCM is an extension of the Community Atmosphere Model (CAM) - the atmospheric component of the Community Climate System Model

WACCM

NCAR

Community Atmosphere Model Flowchart

WACCM-3.5

Model Framework	Dynamics	Tracer Advection	Resolution	Chemistry	Other Processes
Extension of the NCAR Community Atmosphere Model version 3 (CAM3) Based upon CAM3.5.48	Finite Volume Dynamical Core (Lin, 2004) Fully-interactive with chemistry, i.e., consistent with model- derived, radiatively active gases: O3, CO2, CH4, N2O, H2O, CFC11, CFC12, O2, NO	Flux-form Finite Volume (Lin, 2004)	Horizontal: 1.9° x 2.5° (lat x lon) Vertical: 66 levels 0-140km < 1.0km in UTLS 1-2 km in stratosphere ~3 km in MLT	Middle Atmosphere Mechanism: 57 Species including Ox, HOx, NOx, BrOx, and ClOx Heterogeneous chemistry E-region Ion Chemistry	GW Param.: convection-, frontal-, and orographically- generated Molecular Diffusion: Banks and Kockarts, 1973 Auroral processes, including ion drag, and Joule heating LW/SW and chemical potential heating

CEDAR, 2009

WACCM-3 Chemical Constituents in MA Mechanism

Long-lived Species:	(17-species)
Misc:	CO ₂ , CO, CH ₄ , H ₂ O, N ₂ O, H ₂ ,O ₂
CFCs:	CCl ₄ , CFC-11, CFC-12, CFC-113
HCFCs:	HCFC-22
Chlorocarbons:	CH ₃ CI, CH ₃ CCI ₃ ,
Bromocarbons:	CH ₃ Br
Halons:	H-1211, H-1301
Constant Specie	es: N ₂

Short-lived Species: (34 neutrals + 5 ions + electrons)

O _X :	O ₃ , O, O(¹ D)			
NO _X :	N, NO, NO ₂ , NO ₃ , N ₂ O ₅ , HNO ₃ , HO ₂ NO ₂			
CIO _X :	CI, CIO, CI ₂ O ₂ , OCIO, HOCI, HCI, CIONO ₂ , CI ₂			
BrO _x :	Br, BrO, HOBr, HBr, BrCl, BrONO ₂			
HO _X :	H, OH, HO ₂ , H ₂ O			
HC Species: CH_2O , CH_3O_2 , CH_3OOH				
lons:	N ⁺ , N ₂ ⁺ , NO ⁺ , O ⁺ , O ₂ ⁺			
Other:	O ₂ (¹∑), O ₂ (¹∆), N(²D), e			

WACCM-3

- WACCM modifications for the upper atmosphere:
 - Variability of solar spectrum
 - Chemical heating
 - Airglow
 - E-region ion chemistry (5 ions & electrons)
 - EUV and x-ray ionization
 - Auroral processes
 - Particle precipitation
 - Ion drag
 - Joule heating

-90

-60

-30

0

Latitude (deg)

Zonal winds 0-120 km

WACCM3.6

ACCM

CEDAR, 2009

60

90

30

Whole Atmosphere Community Climate Model

Atmospheric Tides in WACCM

with R.R. Garcia and A.K. Smith

Monthly mean tidal diagnostics

ACCM

Applied to u, v, T, and PS. Calculated and output once per month

Amplitude and phase calculated at each height (z) and latitude (y)

Post-processing:

migrating and non-migrating modes can be separated by FFT expansion in longitude of the tidal coefficients

Example for the diurnal tide:

The diurnal tide for each month of output can be represented with two coefficients, C_{24} and S_{24} , at each gridpoint (x, y, z):

$$T_d = C_{24} \cdot \cos\left(\frac{2\pi t}{24}\right) + S_{24} \cdot \sin\left(\frac{2\pi t}{24}\right)$$

t = universal time (hr)

During the model run, calculate C_{24} and S_{24} by accumulating the following sums at each time step:

$$C_{24} = \frac{2}{N} \sum_{n=1}^{N} T(t_n) \cos\left(\frac{2\pi t_n}{24}\right)$$
$$S_{24} = \frac{2}{N} \sum_{n=1}^{N} T(t_n) \sin\left(\frac{2\pi t_n}{24}\right)$$

Equatorial spectrum at 12 SH (~85 km)

Structure of modeled migrating temperature tides

ACCM

NCAR

Structure of two modeled "non-migrating" tides

ACCM

NCAR

Diurnal migrating T tide: WACCM vs. SABER

WACCM diurnal tide obtained from monthly amplitude/phase over period of simulation (50 yr) Structure shown here is the timemean over the entire simulation period

SABFR diurnal tide from Salby spectral analysis of SABER data Tide structure determined from coherence of spectrum over a band centered at 1 cpd westward Results may be viewed as longterm mean over SABER period, 2002-2007

The morphology of the tide is generally consistent between WACCM and SABER WACCM amplitudes are considerably smaller, especially in the mesosphere and lower thermosphere

Diurnal migrating V tide structure : TIDI vs. WACCM

TIDI march-may 2004

•Similar structure in WACCM and TIDI observations, but smaller amplitudes in the model

Altitude-time variability of the diurnal tide at the Equator

model and observations display a clear semiannual variation, with maxima at the equinoxes amplitudes observed by SABER are about 2X larger than calculated with WACCM there is also considerable interannual variability (quasibiennial)

SABER Diurnal T tide @ Equator, 90 km

QBO at ~35 mb in red

Semidiurnal migrating T tide: WACCM vs. SABER

WACCM Semidiurnal migrating T tide

As with diurnal tide, structures are generally consistent; but WACCM amplitudes are smaller

Seasonal variability of the semidiurnal V tide, 95 km

ACCM

WACCM composite V seasonal cycle, ~95 km

HRDI composite V seasonal cycle @ 95 km

WACCM: 50-year mean UARS/HRDI: Nov 1991 – July 1994

Diurnal eastward-3 T tide: WACCM vs. SABER

WACCM: 50 year mean

SABER: 2002-2007

large-amplitude above ~ 10 sh (70 km) has the structure of a Kelvin wave phase behavior suggests also RG structure at lower altitudes

Whole Atmosphere Community Climate Model

Seasonal variation of eastward-3 T tide at equator

ACCM

NCAR

SABER: regular seasonal, maxima always in late NH summer (~August) WACCM: semiannual variation, with maxima in August and January

WACCM-X: Thermosphere and Ionosphere Extension of WACCM

led by Han-Li Liu (HAO)

WACCM-X modifications

- 81 or 125 vertical levels (0-~500 km)
- Major/minor species diffusion
- Species dependent Cp, R, m 🗸
- Ambipolar diffusion
- Ion/electron transport due to Lorentz force
- Ion/electron energy equations
- Coupling with plasmasphere (GIP) / magnetosphere (GAIM/CISM)

WACCM-X: Compositional Structures

ACCM

Minor species

NCAR

Thermosphere O/N₂ Semi-annual Variation (~250 km)

WACCM

MSIS

Fuller-Rowell, 1998

Longitude

Migrating Diurnal Tide: Temperature

Migrating Diurnal Tide: Horizontal Winds

81 vs. 125 levels

NCAR

Short-term Variability

Polar mesospheric clouds

with A. Merkel

NCAR

PMCs are water ice clouds near the mesopause (~83 km)

Notilucent clouds (NLC) when viewed from the ground

WACCM

WACCM-3 with PMC parameterization

ACCM

- 124 levels with 0.5 km resolution near the mesopause
- macroscale PMC parameterization of ice nucleation, growth, and sublimation
- Ice diffused, advected and sedimented
- Intended for long integrations (solar cycle, trends, etc.)
- Depends on local parameters (i.e. not particle-following)
- ~16 wall clock hrs. / year on 192 processors

- Assume Gaussian distrib. width of 13 nm
- Backscatter ratio calculated for 90°

Occurrence frequency at 70°

WACCM

Whole Atmosphere Community Climate Model

PMC observation frequency

SNOE

albedo > 10^{-5}

Can solar tides produce zonal asymmetry?

ACCM

CIPS cloud frequency NH Days 172-195, 70-80 N GW occurence and CIPS cloud frequency 2.2 Normalised Wave occurence 2.0 cloud Frequenc 1.8 1.6 CIPS 1.4 1.2 1.0 -180 -120 60 120 180 -60 0 longitude Analysis by Amal Chandran,

CU/LASP

CEDAR, 2009

WACCM T tidal amplitudes & mean ice mass

WACCM ice mass tidal amplitudes & mean

Souther hemisphere tidal temperature viewed from sun-synchronous satellite at 12:00 hrs. local time

m=0

ce mass

8 x 5-day mean sequence of T and ice mass

Tidal amplitudes Southern Hemisphere Jan 11-15 @ 11.5 scale hts.

Temperature

Tidal amplitudes Southern Hemisphere Jan 16-20 @ 11.5 scale hts.

Temperature

Tidal amplitudes Southern Hemisphere Jan 21-25 @ 11.5 scale hts.

Temperature

Tidal amplitudes Southern Hemisphere Jan 26-30 @ 11.5 scale hts.

Temperature

Tidal amplitudes Southern Hemisphere J31- F04 @ 11.5 scale hts.

Temperature

Tidal amplitudes Southern Hemisphere Feb 05-09 @ 11.5 scale hts.

Temperature

Tidal amplitudes Southern Hemisphere Feb 10-14 @ 11.5 scale hts.

Temperature

Tidal amplitudes Southern Hemisphere Feb 15-19 @ 11.5 scale hts.

Temperature

PMC frequency & brightness are increasing

ACCM

WACCM albedo calculations

• Albedo calculated at 252 nm a 120° scattering angle

ACCM

- Albedo above detectable threshold calculated over each season
- Season defined as SBUV: -30 to +70 DFS.
- Threshold dependent on latitude (DeLand): 50N to 64N = 5.5G Threshold 64N to 74N = 6.5G threshold 74N to 82N = 7.5G threshold

Northern hemisphere

SBUV

DeLand et al. 2007

CEDAR, 2009

WACCM

Southern hemisphere

SBUV

DeLand et al. 2007

CEDAR, 2009

Meteoric sodium

ACCM

Chemistry follows Plane [2004]

- 26 Na chemical reactions
- 5 photolysis reactions
- *very* simplified constant meteor input function:

CEDAR, 2009

Global mean constituent profiles

ACCM

CEDAR, 2009

Daily 'snapshots' of sodium ~90km / UT00

Sodium density at ~90 km

NCAR

Seasonal variation of sodium column density

VACCM

Na Density [cm⁻³], lat 18.000000

NCAR

ACCM

JANCHES ET AL.: GLOBAL MICROMETEOR INPUT FUNCTION

009 21:20

CEDAR, 2009

OSIRIS seasonality

WACCM is available to the scientific community ...

http://cdp.ucar.edu/

WACCM

	CCSM WHOLE ATMOSPHERE MODEL WORKING GROUP		
WELCOME TO CCSM EXPAND COLLAPSE About CCSM CCSM Administration CCSM Working Groups CCSEG CCSM Research Tools CCSM Research Tools CCSM News DCCSM News COUNTS	The Whole-Atmosphere Community Climate Model (WACCM) is a comprehensive numerical model, spanning the range of altitude from the Earth's surface to the thermosphere. The development of WACCM is an inter-divisional collaboration that unifies certain aspects of the upper atmospheric modeling of HAO, the middle atmosphere modeling of ACD, and the tropospheric modeling of CGD, using the NCAR Community Climate System Model (CCSM) as a common numerical framework. <i>Upcoming Meetings</i> WAWG Meeting, NCAR, Mesa Lab, 6 March 2009 [announcement] 14th Annual CCSM Workshop, The Village at Breckenridge, Breckenridge, CO, 15-18 June 2009. <i>WAWG Announcements</i> The WACCM development team is pleased to announce the public release of version 3 of the Whole Atmosphere Community Climate Model (WACCM3). WACCM3 source code, input datasets, run scripts, and documentation can be downloaded from the Community Data Portal [http://cdp.ucar.edu/]. Users are encouraged to participate in	CCSM PROJECT The Community Climate System Model (CCSM) is a fully-coupled, global climate model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate states. CCSM is sponsored by the National Science Foundation (NSF) and the U.S. Department of Energy (DOE). Administration of the CCSM is maintained by the Climate and Global Dynamics Division (CGD) at the National Center for Atmospheric Research (NCAR).	
CCSM Support	meetings of the CCSM WACCM Working Group and to sign up to the mailing list. WAWG Community Liaison: TBD	RELATED CCSM Working Group Co-chairs CCSM Working Group Co-Chairs Terms of Reference	
Hire FY2010	Co-Chair Contact Information: Dr. Daniel Marsh NCAR-ACD, P.O. Box 3000, Boulder, CO 80307-3000 Tel: 303-497-1160, Fax: 303-497-1400, e-mail: marsh@ucar.edu Dr. Aaron J. Ridley (07/01/08 - 6/30/10) Department of Atmospheric, Oceanic, and Space Sciences, 1411B Space Research Building, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143 Tel: 734-764-5727, Fax: 734-647-3083, e-mail: ridley@umich.edu	WACCM wiki	
		CONTACT INFORMATION Email: CCSM Working Group Co Chairs Email: CCSM Contact Email: WAWG Members Subscribe to CCSM WAWG List	

Whole Atmosphere Community Climate Model

WACCM forum on CCSM Bulletin Board

WACCM

http://bb.cgd.ucar.edu/

VBulletin						
CGD Forum	User Name User Name	Remember Me				
Register	FAQ	Calendar	Today's Posts	Si	arch	
Sub-Forums : Whole Atmosph	ere Modeling with W/	ACCM		S	earch this	Forum
Forum				Last Post	Threads	Posts
General Announcement	<u>:s</u>		by drm	M Working Group Meeting 01-07-2009 09:56 AM 🔊	3	3
Software and Run-time	Issues		by drm	M bug in TH2d history 12-08-2008 07:09 PM ∑	4	12
Science Issues				Never	0	0
Forum Contains New Posts Forum Contains No New Posts		For	um Jump tole Atmosphere Modeling with WACC	м	÷	0
		All times are GMT -6. The time no	w is 06:09 PM.			
				Contact Us - CCSM	Help - Arc	hive -
				CEDAR. 2	2009	

Summary I

• Tides

NCAR

- WACCM produces diurnal/semi-diurnal migrating and nonmigrating tides in general agreement with observations
- Tidal amplitudes usually lower than observed (~factor 2)
- Seasonal and inter-annual variability is well-simulated including QBO modulation
- WACCM-X
 - Thermospheric extension of WACCM reproduces reasonable composition, temperatures and winds (inc. tides) up to 500km
 - Ionospheric electrodynamics under development

Summary II

• PMCs

NCAR

- Macroscale parameterization of PMCs incorporated into WACCM reproduces observed seasonal and latitudinal variations ice mass, albedo, frequency
- WACCM analysis indicates significant variability induced by tides
- Long-term SBUV record well-simulated by WACCM
- WACCM with sodium chemistry
 - Plane (2004) chemistry implemented with simplified MIF
 - Significant variability caused by dynamics
 - Seasonality not as observed need more realistic MIF

Future activities

- Continued WACCM-X development
- IPCC AR5 simulations using WACCM/CCSM4 with fully-interactive ocean -- investigate "high-top" vs. "low-top" (first with ionosphere?)
- Internally generated QBO
- Couple meteoric metal input function to Na chemistry and compare to LIDAR observations. Extend chemistry to Fe.
- Use metal chemistry model to estimate 'smoke' CCN concentrations fed into PMC model

Whole Atmosphere Community Climate Model

Thank you