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Streamer Structure of Sprites

• Filamentary structures of sprites:
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[Gerken et al., GRL, 27(17), 2637, 2000]

• Four major emission band systems of sprites:

Emission Transition Excitation Energy Lifetime at Quenching
Band System Threshold (eV) 70 km Alt. Alt. (km)

1PN2 N2(B
3Πg)→N2(A

3Σ+
u ) ∼7.35 5.4 µs ∼53

2PN2 N2(C
3Πu)→N2(B

3Πg) ∼11 50 ns ∼30

LBH N2 N2(a
1Πg)→N2(X

1Σ+
g ) ∼8.55 14 µs ∼77

1NN+
2 N+

2 (B2Σ+
u )→N+

2 (X2Σ+
g ) ∼18.8 69 ns ∼48
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Observation of NO-γ Emissions in Laboratory Experiments

• Laboratory experiments at ground pressure suggest that NO-γ emissions can be generated
during streamer discharges, which have a wavelength range overlapping with that of N2

LBH emissions [e.g., Simek et al., J. Phys. D: Appl. Phys., 35, 1998; Tochikubo and Teich,
Jpn. J. Appl. Phys., 39, 2000].

Figure 1: Time histories of 2PN2, 1NN+
2 and NO-γ from repetitive positive streamer discharge (365 hPa N2 + 10 hPa

O2) [Tochikubo and Teich, 2000].
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NO Chemistry for Sprite Streamers

• Important species involved in NO chemistry: N2, O2, N(2D), O(3P ), N2(A
3Σ+

u ), NO(X2Πr),
and NO(A2Σ+)

Reaction process or index Reaction Rate Coefficient [f(E/N) denotes
function of reduced electric field]

Electron collision reactions
1 e + N2 → e + N(4S) + N(2D) f(E/N)
2 e + O2 → e + O(3P ) + O(3P ) f(E/N)
3 e + N2 → e + N2(A3Σ+

u ) f(E/N)
4 e + N2 → e + N2(B3Πg) f(E/N)
5 e + N2 → e + N2(C3Πu) f(E/N)
6 e + NO(X2Πr) → e + NO(A2Σ+) f(E/N)

Chemical reactions
7 N(2D) + O2 → NO(X2Πr) + O(3P ) 5.20× 10−18 m3s−1

8 N2(A3Σ+
u ) + O(3P ) → NO(X2Πr) + N(2D) 7× 10−18 m3s−1

9 N(2D) + NO → N2 + O(3P ) 6.0× 10−17 m3s−1

Excitation
10 N2(A3Σ+

u ) + NO(X2Πr) → NO(A2Σ+) + N2(X1Σ+
g ) 8.75× 10−17 m3s−1

Quenching
11 N(2D) + N2 → N(4S) + N2 1.70× 10−20 m3s−1

12 N2(A3Σ+
u ) + O2 → N2 + O2 8.75× 10−19 m3s−1

13 N2(A3Σ+
u ) + O2 → N2 + 2O(3P ) 1.63× 10−18 m3s−1

14 NO(A2Σ+) + O2 → NO(X2Πr) + O2 1.62× 10−16 m3s−1

Radiative transition
15 N2(B3Πg) → N2(A3Σ+

u ) + hν 1.7× 105 s−1

16 N2(C3Πu) → N2(B3Πg) + hν 2.0× 107s−1

17 NO(A2Σ+) → NO(X2Πr) + hν 5× 106 s−1
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NO-γ Band Emissions

• The transition leading to NO-γ emissions:
NO(A2Σ+) → NO(X2Πr) + hν.
The excitation energy threshold for NO(A2Σ+) is 5.45 eV.

• The radiative transition rate (Einstein coefficient):
Ak = 5× 106 s−1.

• The excited state NO(A2Σ+) is mainly produced by resonant energy transfer:
N2(A

3Σ+
u ) + NO(X2Πr) → NO(A2Σ+) + N2(X

1Σ+
g ). The direct excitation by electron

impact plays a minor role.

• The dominant quenching process of excited state NO(A2Σ+):
NO(A2Σ+) + O2 → NO(X2Πr) + O2, which has a rate constant 1.62×10−16 m3/s. The
resulting quenching altitude is ∼30 km.
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Streamer Model

• Modeling results for a sprite streamer developing in an ambient field E0 = 5×N70/N0

kV/cm, where N70 and N0 are air densities at 70 km and 0 km altitude, respectively.

t = 530 μs
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Simulation Results for a Streamer at 70 km Altitude

• E0 = 5×N70/N0 kV/cm, where N70 and N0 are air densities at 70 km and 0 km altitude,
respectively. The initial density of NO is set to be 2×1014 1/m3 [Atreya, Adv. Space Res.,
1, 127, 1981].
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Conclusions and Implications of This Work for Sprite Observations

• The NO-γ emissions from sprites are not observable for a wide bandwidth photometer.

• Strong bands of NO-gamma emissions are located in the wavelength range 240-260 nm in
which N2 LBH emissions are absent [Vallance-Jones, 1974, Tables 4.14 and 4.18, 1974].
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• A dedicated narrow bandwidth photometer with the wavelength passband of 240–260 nm
would be able to detect sprite NO-γ emissions from space.
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