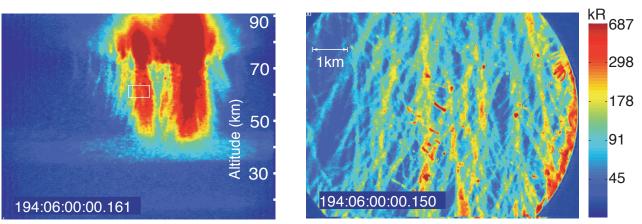
Modeling Studies of Optical Properties of Sprite Streamers and Their Chemical Effects On the Upper Atmosphere


Ningyu Liu

Department of Electrical Engineering Communications and Space Sciences Laboratory The Pennsylvania State University University Park, PA 16802

Advisor: Victor P. Pasko

Streamer Structure of Sprites

• Filamentary structures of sprites:

[Gerken et al., GRL, 27(17), 2637, 2000]

• Four major emission band systems of sprites:

Emission	Transition	Excitation Energy	Lifetime at	Quenching
Band System		Threshold (eV)	$70~\mathrm{km}$ Alt.	Alt. (km)
$1 PN_2$	$N_2(B^3\Pi_g) \rightarrow N_2(A^3\Sigma_u^+)$	~ 7.35	$5.4 \ \mu s$	~ 53
$2PN_2$	$N_2(C^3\Pi_u) \rightarrow N_2(B^3\Pi_g)$	~11	50 ns	~30
LBH N ₂	$N_2(a^1\Pi_g) \rightarrow N_2(X^1\Sigma_g^+)$	$\sim\!\!8.55$	$14 \ \mu s$	~ 77
$1NN_2^+$	$N_2^+(B^2\Sigma_u^+) \rightarrow N_2^+(X^2\Sigma_g^+)$	~18.8	69 ns	~48

Observation of NO- γ Emissions in Laboratory Experiments

Laboratory experiments at ground pressure suggest that NO-γ emissions can be generated during streamer discharges, which have a wavelength range overlapping with that of N₂ LBH emissions [e.g., Simek et al., J. Phys. D: Appl. Phys., 35, 1998; Tochikubo and Teich, Jpn. J. Appl. Phys., 39, 2000].

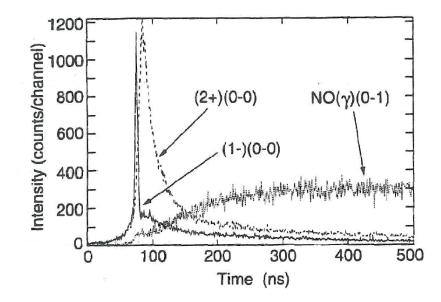
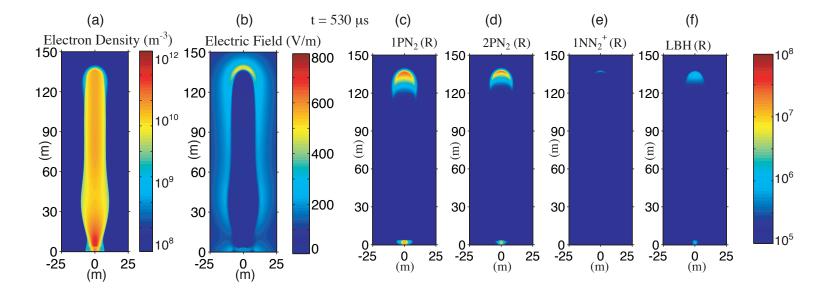


Figure 1: Time histories of $2PN_2$, $1NN_2^+$ and NO- γ from repetitive positive streamer discharge (365 hPa N₂ + 10 hPa O₂) [*Tochikubo and Teich*, 2000].

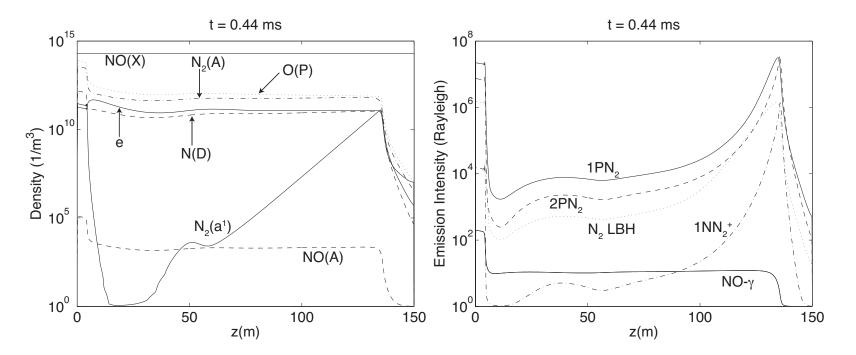
NO Chemistry for Sprite Streamers

• Important species involved in NO chemistry: N₂, O₂, N(²D), O(³P), N₂(A³ Σ_u^+), NO(X² Π_r), and NO(A² Σ^+)

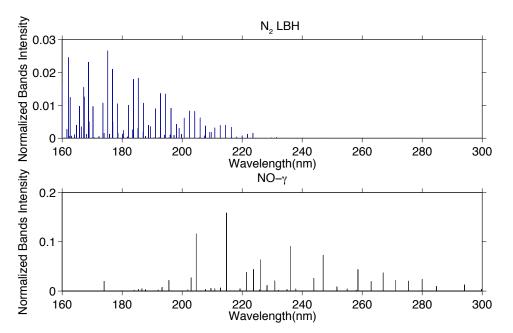

Reaction process or index	Reaction	Rate Coefficient $[f(E/N)]$ denotes	
-		function of reduced electric field]	
Electron collision reactions			
1	$e + N_2 \rightarrow e + N(^4S) + N(^2D)$	f(E/N)	
2	$e + O_2 \rightarrow e + O(^3P) + O(^3P)$	f(E/N)	
3	$e + N_2 \rightarrow e + N_2(A^3 \Sigma_u^+)$	f(E/N)	
4	$e + N_2 \rightarrow e + N_2(B^3 \Pi_g)$	f(E/N)	
5	$e + N_2 \rightarrow e + N_2(C^3 \Pi_u)$	f(E/N)	
6	$e + \operatorname{NO}(X^2 \Pi_r) \to e + \operatorname{NO}(A^2 \Sigma^+)$	f(E/N)	
Chemical reactions			
7	$N(^{2}D) + O_{2} \rightarrow NO(X^{2}\Pi_{r}) + O(^{3}P)$	$5.20 \times 10^{-18} \text{ m}^3 \text{s}^{-1}$	
8	$N_2(A^3\Sigma_u^+) + O(^3P) \rightarrow NO(X^2\Pi_r) + N(^2D)$	$7 \times 10^{-18} \text{ m}^3 \text{s}^{-1}$	
9	$N(^{2}D) + NO \rightarrow N_{2} + O(^{3}P)$	$6.0 \times 10^{-17} \text{ m}^3 \text{s}^{-1}$	
Excitation			
10	$N_2(A^3\Sigma_u^+) + NO(X^2\Pi_r) \rightarrow NO(A^2\Sigma^+) + N_2(X^1\Sigma_q^+)$	$8.75 \times 10^{-17} \text{ m}^3 \text{s}^{-1}$	
Quenching			
11	$\mathcal{N}(^2D) + \mathcal{N}_2 \to \mathcal{N}(^4S) + \mathcal{N}_2$	$1.70 \times 10^{-20} \text{ m}^3 \text{s}^{-1}$	
12	$N_2(A^3\Sigma_u^+) + O_2 \rightarrow N_2 + O_2$	$8.75 \times 10^{-19} \text{ m}^3 \text{s}^{-1}$	
13	$N_2(A^3\Sigma_{\mu}^+) + O_2 \rightarrow N_2 + 2O(^3P)$	$1.63 \times 10^{-18} \text{ m}^3 \text{s}^{-1}$	
14	$NO(A^2\Sigma^+) + O_2 \rightarrow NO(X^2\Pi_r) + O_2$	$1.62 \times 10^{-16} \text{ m}^3 \text{s}^{-1}$	
Radiative transition			
15	$N_2(B^3\Pi_g) \to N_2(A^3\Sigma_u^+) + h\nu$	$1.7 \times 10^5 \ { m s}^{-1}$	
16	$N_2(C^3\Pi_u) \rightarrow N_2(B^3\Pi_g) + h\nu$	$2.0\times10^7 \mathrm{s}^{-1}$	
17	$\operatorname{NO}(A^2\Sigma^+) \to \operatorname{NO}(X^2\Pi_r) + h\nu$	$5 \times 10^{6} \text{ s}^{-1}$	

NO- γ Band Emissions

- The transition leading to NO- γ emissions: NO $(A^2\Sigma^+) \rightarrow NO(X^2\Pi_r) + h\nu$. The excitation energy threshold for NO $(A^2\Sigma^+)$ is 5.45 eV.
- The radiative transition rate (Einstein coefficient): $A_k = 5 \times 10^6 \text{ s}^{-1}.$
- The excited state $NO(A^2\Sigma^+)$ is mainly produced by resonant energy transfer: $N_2(A^3\Sigma_u^+) + NO(X^2\Pi_r) \rightarrow NO(A^2\Sigma^+) + N_2(X^1\Sigma_g^+)$. The direct excitation by electron impact plays a minor role.
- The dominant quenching process of excited state NO($A^2\Sigma^+$): NO($A^2\Sigma^+$) + O₂ \rightarrow NO($X^2\Pi_r$) + O₂, which has a rate constant 1.62×10⁻¹⁶ m³/s. The resulting quenching altitude is ~30 km.


Streamer Model

• Modeling results for a sprite streamer developing in an ambient field $E_0 = 5 \times N_{70}/N_0$ kV/cm, where N₇₀ and N₀ are air densities at 70 km and 0 km altitude, respectively.


Simulation Results for a Streamer at 70 km Altitude

• $E_0 = 5 \times N_{70}/N_0 \text{ kV/cm}$, where N_{70} and N_0 are air densities at 70 km and 0 km altitude, respectively. The initial density of NO is set to be $2 \times 10^{14} \text{ 1/m}^3$ [Atreya, Adv. Space Res., 1, 127, 1981].

Conclusions and Implications of This Work for Sprite Observations

- The NO- γ emissions from sprites are not observable for a wide bandwidth photometer.
- Strong bands of NO-gamma emissions are located in the wavelength range 240-260 nm in which N₂ LBH emissions are absent [*Vallance-Jones*, 1974, Tables 4.14 and 4.18, 1974].

• A dedicated narrow bandwidth photometer with the wavelength passband of 240–260 nm would be able to detect sprite NO- γ emissions from space.

Publications and Conference Presentations to Date

- Refereed Journal Papers:
 - Liu, N. Y., and V. P. Pasko, Modeling studies of NO-γemissions of sprites, *Geophys. Res. Lett.*, accepted, 2007.
 - Bourdon, A., V. P. Pasko, N. Y. Liu, S. Celestin, P. Segur, and E. Marode, Efficient models for photoionization produced by non-thermal gas discharges in air based on radiative transfer and Helmholtz equations, *Plasma Sources Sci. Technol.*, in review, 2007.
- Conference Presentations:
 - Liu, N. Y., and V. P. Pasko, NO Chemistry and NO-gamma Emissions Associated with Sprite Streamers, 2007 CEDAR workshop, *Poster Sessions Booklet*, p. 20, Santa Fe, NM, June 24–29, 2007.
 - Bourdon, A., V. P. Pasko, N. Y. Liu, S. Celestin, P. Segur, and E. Marode, Comparison of the classical integral model with Eddington approximation and Helmholtz equation based models for photoionization produced by non-thermal gas discharges in air, 2007 Aerospace Thematic Workshop: Fundamentals of Aerodynamic-Flow and Combustion Control by Plasmas, Varenna, Italy, May 28-31, 2007.
 - (Invited) Liu, N. Y., and V. P. Pasko, The possibility of generation of NO-gamma emissions in sprite discharges, *Eos Trans. AGU*, 87(52), Fall Meet. Suppl., Abstract AE41A-06, 2006.

Acknowledgements

The support of NSF CEDAR Program is gratefully acknowledged. This research has been supported by NSF ATM 01-34838 grant to Penn State University.