# Wind Measurements: Rockets

## M. F. Larsen

Department of Physics and Astronomy Clemson University Clemson, South Carolina, USA

> CEDAR Student Workshop June 24, 2007



### Launch sites where thermospheric rocket wind measurements have been made



More than 500 wind profile measurements since 1955

(See Larsen, JGR, 2002)

CEDAR Student Workshop - June 24, 2007

Sodium trail released at twilight as a tracer of the neutral wind motions

January 21, 1955 (and October 12, 1955)

Aerobee rocket

#### JGR

### Emission from a Sodium Cloud Artificially Produced by Means of a Rocket

HOWARD D. EDWARDS, JOHN F. BEDINGER, and EDWARD R. MANRING\*

Geophysics Research Directorate, Air Force Cambridge Research Center, Air Research and Development Command, L. G. Hanscom Field, Bedford, Mass.

and

#### C. D. Cooper

Department of Physics, University of Georgia, Athens, Ga.

Abstract—Following BATES's suggestion, three kilograms of metallic sodium vapour were ejected into the atmosphere from 50 to 113 km by means of two Aerobee rockets. The rockets were launched at the beginning of evening twilight on 21 January and 12 October 1955.

Enhanced sodium emission at 5890 Å was definitely observed visually, photometrically and spectrographically from 85 km to 113 km during twilight. No sharp time discontinuities in intensity were observed when the region was enclosed by the earth's optical shadow. No increase in emission was observed during the night.

Possible explanations are given for the lack of emission below 85 km.

Spreading of the sodium cloud indicated winds at the 85-km level to be 180 m.p.h. from the northwest and 100 m.p.h. from the south-east at the 110-km level.



# Chemicals used for neutral wind measurements

| Material                                                | Optical Emissions                                                      | Altitude Range | Characteristics                                                   |
|---------------------------------------------------------|------------------------------------------------------------------------|----------------|-------------------------------------------------------------------|
| Sodium                                                  | Green resonant<br>emission                                             | ~80-200 km     | Requires sunlight to be visible                                   |
| Lithium                                                 | Red resonant<br>emission                                               | ~80-300+ km    | Requires sunlight to<br>be visible, can be<br>tracked in daylight |
| Strontium                                               | Blue-green emission                                                    | ~200-300+ km   | Usually released as a<br>5-10% impurity in<br>Barium releases     |
| Trimethyl Aluminum<br>Al(CH <sub>3</sub> ) <sub>3</sub> | White spectrum<br>when unlit, resonant<br>blue emission when<br>sunlit | ~80-200 km     | Chemiluniscent,<br>visible at night                               |
| Nickel Carbonyl<br>Ni(CO) <sub>4</sub>                  | White spectrum                                                         | ~80-200 km     | Chemiluminescent,<br>visible at night                             |
| Samarium, Neodymium                                     | Red and green<br>emissions,<br>respectively                            | ~100-300+ km   | Material ionizes slowly                                           |
| Titanium Tetrachloride<br>TiCl <sub>4</sub>             | Dense black smoke                                                      | ~20-50 km      | Large chemical tracer mass required                               |

### Lithium Trails

Narrow-band emission at 670.7 nm



Wallops Island, Virginia - December 1969 (Bedinger et al.) 11-19-38 - 52

Greenland - December 12, 1974

Cameras with narrow (1 nm) filters can be used to observe lithium releases in daytime



P155 and P156 are daytime measurements from India

## **Military Missile Rocket Exhaust Trail**



Photographed by P. Anderson at evening twilight

Chemilumiscent - reacts slowly with oxygen in the upper atmosphere to produce a broad spectral emission

In sunlight - TMA produces resonant blue light emission from aluminum



### **Trimethyl Aluminum (TMA)**



Arctic Village, Alaska, March 2, 1978

## **TOMEX Upleg Wind Profile**







# TOMEX Oct 2000

Starfire Optical Range (SOR) Sensitive Doppler Sodium Lidar



Launch Site: Sulf Site, White Sands Missile Range



### Meridional wind

Lidar and TMA Wind Comparisons



### Line-of-sight wind component

(Larsen et al., GRL, 2003)

# **Distribution of winds for latitudes equatorward of 60° from four decades of chemical release wind measurements (>500 profiles)**



(Larsen, JGR, 2002)

# **Distribution of winds for latitudes equatorward of 60° from four decades of chemical release wind measurements (>500 profiles)**



...compared with several years of lidar wind measurements from New Mexico and Hawaii (Zhou et al., 2007)

# Distribution of winds for latitudes equatorward of 60° from four decades of chemical release wind measurements



...compared with several years of lidar wind measurements from New Mexico and Hawaii (Zhou et al., 2007)

### The Big Gun – An alternative launch system

HARP (High Altitude Research Project) 1961 to 1967



Sixteen-inch gun at Barbados site (identical to Yuma gun)





Dr. Gerald V. Bull

### Barbados 16-inch Gun

- Length: 119 feet including 50-foot muzzle extension
- Gun weight 200 tons
- Rate of fire: every 60-90 minutes
- 185 lb (84 kg) projectile to 590k feet (180 km)
- Number of launches: 150 from Barbados and 30 from Yuma

# The Big Gun being fired...





Synoptic wind measurement series

Six TMA wind profiles in a single night

68 wind profile measurements were made at Barbados from 1963 to 1966, many as synoptic series similar to the one shown here.

# HEX 1 & 2 (PI's: Conde and Craven -UAF)





Provided by M. Conde

### **Visualization of instability structures**



Kelvin-Helmholtz billows appear in the altitude range between 102 and 108 km in the upleg portion of a trail in the SEEK-2 experiment (Aug 2002, Japan).

Horizontal wavelength approx. 5 km

Vertical wavelength approx. 2 km

(Larsen et al., Ann. Geophys., 2005)



Wave fronts are evident in trail between 106 and 108 km altitude in a launch from Australia (Lloyd et al., 1970). The wave fronts are orthogonal to the shear vector.

### Turbulent diffusion and turbulent energy dissipation measurements



Bishop et al., JGR, 2006

Table 3. Variation with altitude of the constants of the Kolmogoroff microscale (after Roper 1966a)

| altitude | $\epsilon_{\mathtt{R}}$ | $t_{\rm R}^{\pm}$ | $\eta_{\mathbf{R}}$ |  |
|----------|-------------------------|-------------------|---------------------|--|
| km       | W kg-1                  | S                 | m                   |  |
| 80       | 0.01                    | 10.0 .            | 19.0                |  |
| 81       | 0.011                   | 10.4              | 22.0                |  |
| 82       | 0.0118                  | 10.9              | 24.6                |  |
| 83       | 0.0128                  | 11.4              | 27.4                |  |
| 84       | 0.0139                  | 11.9              | 30.5                |  |
| 85       | 0.015                   | 12.5              | 33.9                |  |
| 86       | 0.016                   | 13.2              | 37.9                |  |
| 87       | 0.017                   | 13.9              | 42.4                |  |
| 88       | 0.0185                  | 14.5              | 47.2                |  |
| 89       | 0.0198                  | 15.3              | 52.8                |  |
| 90       | 0.021                   | 16.1              | 59.0                |  |
| 91       | 0.023                   | 16.8              | 65.6                |  |
| 92       | 0.025                   | 17.5              | 73.0                |  |
| 93       | 0.027                   | 18.4              | 81.3                |  |
| 94       | 0.030                   | 19.0              | 90.0                |  |
| 95       | 0.033                   | 19.7              | 100                 |  |
| 96       | 0.038                   | 20.0              | 109                 |  |
| 97       | 0.042                   | 20.7              | 121                 |  |
| 98       | 0.049                   | 20.9              | 132                 |  |
| 99       | 0.057                   | 21.0              | 145                 |  |
| 100      | 0.066                   | 21.3              | 159                 |  |
| 101      | 0.080                   | 21.0              | 172                 |  |
| 102      | 0.098                   | 20.7              | 186                 |  |
| 103      | 0.125                   | 19.8              | 195                 |  |
| 104      | 0.168                   | 18.8              | 209                 |  |
| 105      | 0.186                   | 19.4              | 232                 |  |
| 106      | 0.20                    | 20.4              | 259                 |  |
| 107      | 0.15                    | 25.6              | 316                 |  |
| 108      | 0.085                   | 37.0              | 413                 |  |
| 109      | 0.033                   | 64.7              | 595                 |  |
| 110      | 0.01                    | 128               | 911                 |  |

Rees et al., Trans. Roy. Phil. Soc., 1972



# **FALLING SPHERE LAUNCH**

Booster-dart separation occurs at ~2 seconds; Inertia carries dart to ~115 km apogee where a 1-meter diameter sphere is ejected; data processing begins on sphere descent at ~100 km; data typically are valid from ~88-90 km to the end of the radar track.





Courtesy R. Goldberg and F. Schmidlin

# **FALLING SPHERE INFLATION**



# Chaff Wind Measurement Technique

Small rockets with apogee near 110-115 km altitude Chaff dimensions: a few x a few tens millimeters Matched to tracking radar wavelength Wind profiles from approximately 95 to 75 km

Challenges:

Clumping of chaff

Tracking center of chaff cloud



Wind profile example



Radar track of chaff cloud

(See, e.g., Widdel, JATP, 1990)

CEDAR Student Workshop

June 24, 2007

### Other Rocket Wind Measurement Instruments



An instrument with flight history

Flown from Wallops Island, Virginia, in 2003

(Diagram courtesy of G. Earle)

Instruments that have been considered or proposed but not flown:

- On-board Fabry-Perot Interferometer using red-line Doppler shifts
- On-board oxygen lamp using Doppler shift of resonant emission
- Instrument based on ionization gauge pressure measurement



### Three Axis Piezoelectric Accelerometer

"Measurements of Atmospheric Density at Kwajalein Atoll, 18 May 1977," C.R. Philbrick, CEDAR Student Workshop A.C. Faire and D.H. Fryklund, <u>AFGL-TR-78-0058</u> (113 pages), 1978. Jun

June 24, 2007



# Conclusions

- Rocket wind measurement techniques based on chemical tracers or tracking of objects, such as falling spheres, have been used extensively since the late 1950's and have proven to be reliable and accurate.
- Tracer techniques generally work well at altitudes from the mesosphere to the upper thermosphere and typically provide wind measurements with an accuracy of approximately 5 m/s and an absolute altitude resolution of a few hundred meters.
- Techniques based on in situ instrument measurements have been less successful. Various designs have been considered but few have been flown. A notable exception is the accelerometer technique, which avoids many of the wake and ram effect problems that characterize techniques that sample the atmosphere directly.