New Results from the C/NOFS Program

The C/NOFS Team and Science Community

A view of the lonosphere in a Prolonged Solar Minimum

Thin and Contracted Ionosphere Revealed in GPS Occultation

Climatology:	Mid-April
(SSN=0)	Mid-May
Latitude +7.5° Longitude +30°	Mid-June Mid-July Mid-August

• HmF2

- Max 300 km during daytime
- Min 240 km during nighttime

• NmF2

- 1 x10⁶ cm⁻³ at pre-sunset max.
- 4 x 10⁴ cm⁻³ at pre-sunrise min

O+/H+ Transition Height - The extent of the ionosphere

Heelis et al., 2009

The Background Topside Ionosphere near 400 km !!

Coley et al. 2009

- Ion Temperature
 900 K during daytime
 - 600 K at night
- Total Ion Density

 4 x 10⁵ cm⁻³ during daytime
 9 x 10³ cm⁻³ pre-sunrise
 Highly variable local minima near sunrise
- Ion Composition 100% O+ during daytime 50% O+ 50% H+ at night

Anomalies in Equatorial Ion and Neutral Densities

C/NOFS and DMSP suggest

- Local minimum in ion density at the equator
- Irregularities appear after sunset.
- Irregularities frequently maximize in intensity near midnight

DMSP and GRACE suggest

- Local minimum in ion density accompanied by local minimum in neutral density near 450 km
- Anomaly is extended in local time from 20:00 to sunrise

Ionospheric Conductivity, Winds and E-fields are different from expectations

Equatorial Ion Drifts are small and downward after local noon Strong Longitude variations

Nightime Ion Density Structure

De La Beaujardiere et al., 2009

Frequently appears later than expected ~22 hrs Persists longer than expected toward pre-sunrise Frequently does not look like convectional bubbles

Dramatic Sensitivity to Interplanetary Medium

Burke et al. 09

Bubble Structures in Ion Density consistent with R-T Instability

Depleted plasma regions moving upward

Deepest depletions have largest upward drifts at a given altitude.

Seeds and weak ExB drifts create bubble structure after sunset

Large scale (wave-like) undulations seen prior to bubble formation

Bubbles associated with elevated background density produced by weak prereversal enhancement.

Fully developed (decaying) bubbles seen at midnight

Structure in density and dynamics inside a bubble

C/NOFS views the top of structure extending up to 430 km.

Radar reveals km-scale structure in altitude moving in different directions.

Summary

Ionosphere during an extended solar minimum shows characteristics that challenge our understanding.

- lonosphere and Atmosphere are contracted occupy a volume that does not extend into space as far as usual.
 - Lower than usual values for HmF2 and NmF2 by day and night.
- Bulk of neutral atmosphere lies below 400 km
 - Ionosphere at 450 km is 50% light ions at night
 - Ionosphere and Neutral Atmosphere is cold 800K by day 600K by night
- Background ExB deviates significantly from usual diurnal pattern
 - Weak or downward drifts after local noon are common.
- Very small upward drifts and low neutral density significantly reduce the ion-neutral collision frequency in the bottom side at night
 - Small PRE will induce bubble formation.
 - Interplanetary medium readily induces drifts that spawn irregularities.
- Inertial (collionless) effects are evident at much lower altitudes than might be expected.
 - Temporal evolution and spectral shape of irregularities will be different.