MLT observations by Rayleigh and resonance lidar: Some insights

#### **Michael Gerding**

Leibniz-Institute of Atmospheric Physics (Kühlungsborn, <u>Germany)</u>







#### Modern Science with Lidars: Fong et al., 2014

# **AGU**PUBLICATIONS

http://publications.agu.org/journals/

# JGR

#### Journal of Geophysical Research: Atmospheres

#### **RESEARCH ARTICLE**

10.1002/2013JD020784

#### Key Points:

 Temperature tides from 30 to 110 km are characterized with lidar and WAM at McMurdo

#### Winter temperature tides from 30 to 110 km at McMurdo (77.8°S, 166.7°E), Antarctica: Lidar observations and comparisons with WAM

Weichun Fong<sup>1,2</sup>, Xian Lu<sup>1</sup>, Xinzhao Chu<sup>1,2</sup>, Tim J. Fuller-Rowell<sup>1,3</sup>, Zhibin Yu<sup>1,2</sup>, Brendan R. Roberts<sup>1,2</sup>, Cao Chen<sup>1,2</sup>, Chester S. Gardner<sup>4</sup>, and Adrian J. McDonald<sup>5</sup>



#### Modern Science with Lidars: Yuan et al., 2014

# **@AGU** PUBLICATIONS



#### Journal of Geophysical Research: Atmospheres

<sup>1</sup>Center of Atmospheric

#### RESEARCH ARTICLE

10.1002/2013JD020338

#### Key Points:

- Deduce vertical wind tide from Na density and MLT temperature
- Establish vertical wind tidal climatology
- Observed seasonal variations are in agreement with tidal model
  - a) Na lidar VW Diurnal Amplitude (cn

Vertical tidal wind climatology from full-diurnalcycle temperature and Na density lidar observations at Ft. Collins, CO (41°N, 105°W)



- Vertical winds typically too small to be observable (~ cm/s) University, Fort Collins, U Wind calculated indirectly from temperature
- 105





### Modern Science with Lidars: Yi et al., 2013

Journal of Atmospheric and Solar-Terrestrial Physics 102 (2013) 172-184



# Simultaneous and common-volume three-lidar observations of sporadic metal layers in the mesopause region



Fan Yi<sup>a,b,c,\*</sup>, Shaodong Zhang<sup>a,b,c</sup>, Changming Yu<sup>a,b,c</sup>, Yunpeng Zhang<sup>a,b,c</sup>, Yujin He<sup>a,b,c</sup>, Fuchao Liu<sup>a,b,c</sup>, Kaiming Huang<sup>a,b,c</sup>, Chunming Huang<sup>a,b,c</sup>, Ying Tan<sup>a,b,c</sup>



## Modern Science with Lidars: Friedman et al., 2013

Journal of Atmospheric and Solar-Terrestrial Physics 104 (2013) 253-259



# Observation of a thermospheric descending layer of neutral K over Arecibo

Michae



Jonathan S. Friedman<sup>a,c,\*</sup>, Xinzhao Chu<sup>b</sup>, Christiano Garnett Marques Brum<sup>a</sup>, Xian Lu<sup>b</sup>

<sup>a</sup> Arecibo Observatory, SRI International, HC-3 Box 53995, Arecibo, <sup>b</sup> Cooperative Institute for Research in Environmental Sciences & D 216 UCB, Boulder, CO 80309, USA

<sup>c</sup> Puerto Rico Photonics Institute, Universidad Metropolitana, San Ju

- Origin of thermospheric layers
- Global distribution?
- Use for temperature data at >110 km





## Modern Science with Lidars: Gerding et al., 2013

GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 6390-6394, doi:10.1002/2013GL057955, 2013

#### Diurnal variations of midlatitude NLC parameters observed by daylight-capable lidar and their relation to ambient parameters

M. Gerding,<sup>1</sup> M. Kopp,<sup>1</sup> P. Hoffmann,<sup>1</sup> J. Höffner,<sup>1</sup> and F.-J. Lübken<sup>1</sup>



# MLT lidars







#### Overview

- Modern Science with Lidars
- Lidar Basics
- Data Reduction Methods
  - Temperatures in the Metal Layer
  - Temperatures from Density Soundings
- Tradeoffs ("Is there an optimal RMR lidar?")
- Summary and Outlook





#### Light Interaction with the Atmosphere

- Rayleigh scattering elastic; atoms or molecules
- Mie (particle) scattering elastic; aerosol particles
- Resonance fluorescence elastic at atomic transition; large cross section
- Raman scattering inelastic, molecules
- Fluorescence
  - inelastic, broadband emission; atoms or molecules
- Absorption
  - attenuation in bands; molecules or particles



ground devlet vel





# Light Interactions with the Atmosphere

| process                   | scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | species                    | backscatter<br>cross section σ<br>rel. factor | density                                                                                                                              | λ<br>dependence     |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Rayleigh scattering       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | atoms,<br>molecules        | $5 \cdot 10^{-28} \text{ cm}^2/\text{sr}$     | 0 km: $2.5 \cdot 10^{19}$ cm <sup>-3</sup><br>25 km: $8 \cdot 10^{17}$ cm <sup>-3</sup><br>90 km: $6 \cdot 10^{13}$ cm <sup>-3</sup> | $\lambda^{-4}$      |
| Mie scattering            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aerosols                   | $0.2 - 10^{18}$                               | $20 \text{ km:} < 100 \text{ cm}^{-3}$<br>PMC: 50-500 cm <sup>-3</sup>                                                               | depends on size     |
| resonance<br>fluorescence | non han                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | atoms (ions,<br>molecules) | $10^{14}$ - $10^{16}$                         | $5 - 25000 \text{ cm}^{-3}$                                                                                                          | spectrum            |
| Raman scattering          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | molecules                  | 1/1000                                        |                                                                                                                                      | spectrum            |
| fluorescence              | non the second s | atoms,<br>molecules        | 10 <sup>8</sup>                               |                                                                                                                                      | spectrum            |
| absorption                | ~ hi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | molecules,<br>aerosols     |                                               |                                                                                                                                      | spectrum            |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | T                                             | .1                                                                                                                                   | Leibniz-Gemeinschaf |



#### Lidar schematic



## Basic Lidar Equation

$$I(\lambda, z_i) = I_0(\lambda) \cdot \frac{A}{4\pi z_i^2} \cdot T^2(\lambda, z_i) \cdot \rho(z_i) \cdot \beta(\lambda, z_i) \cdot \eta(\lambda) \cdot \Delta z + B$$

l detector sensitivity

bin width

background

total backscatter coefficient ( $\beta_{Ray} + \beta_{Mie} + \beta_{Res}$ )

geometric overlap between laser and telescope FOV

transmission between ground and scattering altitude  $z_i$ 

solid angle of visible telescope aperture

emitted intensity at the wavelength  $\boldsymbol{\lambda}$ 

intensity at the emitted wavelength  $\lambda$  received from altitude  $z_i$  ( $z=c \cdot t/2$ )





#### Overview

- Modern Science with Lidars
- Lidar Basics
- Data Reduction Methods
  - Temperatures in the Metal Layer
  - Temperatures from Density Soundings
- Tradeoffs ("Is there an optimal RMR lidar?")
- Summary and Outlook





## above 80 km: K resonance lidar





#### 80-105 km: K resonance lidar

#### Hyperfinestructure and Doppler broadening of a K resonance line

# Measured and fitted shape of the resonance line





Michael Gerding: Introduction to lidars



#### 2-frequency temperature retrieval



 $D_2$  transition as a function of fr A temperature increase causes The Na  $D_2$  center wavelength is

- Smaller statistical uncertainty than scan method
  Suctomatic appendix lacor
- Iarger (unknown) systematic error if laser is not perfect (broadband, sidemodes)

Papen and Treyer, Appl. Opt., 1998





#### Fe-Boltzmann temperature retrieval



Fig. 1. Energy-level diagram of atomic Fe used for the Boltzmann technique.

 requires only broadband laser
 statistical uncertainty larger at low temperatures (polar summer mesopause)

Chu et al., Appl. Opt., 2002





#### Overview

- Modern Science with Lidars
- Lidar Basics
- Data Reduction Methods
  - Temperatures in the Metal Layer
  - Temperatures from Density Soundings
- Tradeoffs ("Is there an optimal RMR lidar?")
- Summary and Outlook





#### Temperature profile from air density profile



## 22-90 km: Rayleigh lidar





#### **Bottom-top Temperature Inversion**



#### Lidar sounding 29 Sept. - 3 Oct. 2011





#### Temperature observations at high solar elevation





#### Lidar sounding 29 Sept. - 3 Oct. 2011





#### Overview

- Modern Science with Lidars
- Lidar Basics
- Data Reduction Methods
  - Temperatures in the Metal Layer
  - Temperatures from Density Soundings
- Tradeoffs ("Is there an optimal RMR lidar?")
- Summary and Outlook





#### Temperature profiles by combined lidars



#### Is there an optimal RMR lidar??

#### Increasing SNR by increasing Power\*Aperture??



### Is there an optimal RMR lidar?? - II

### Influence of FOV on lidar efficiency

- 80 cm telescope, FOV 500  $\mu$ rad  $\rightarrow$  1.6 mm aperture
  - $\rightarrow$  Easy focussing on PMT; complicate with APD (Ø 0.18 mm)
  - $\rightarrow$  Daytime soundings:
    - →large skylight background 😁
    - →Etalons/filters large (expensive) or less efficient 😁
- 80 cm telescope, FOV 60  $\mu$ rad  $\rightarrow$  0.2 mm aperture
  - $\rightarrow$  More complicate adjustment of telescope  $(\mathbf{R})$
  - → Beam stabilization required
  - → Easier focussing on APDs 🙂
  - $\rightarrow$  Daytime soundings:
    - $\rightarrow$  Small skylight background (~1/70)  $\bigcirc$

 $\rightarrow$ Etalons/filters highly efficient (>90%)  $\bigcirc$ 





#### If money is no problem and sky is dark ...

- PA product of IAP RMR: 20 W \* 0.5 m<sup>2</sup> =  $10 W m^2$ ALOMAR RMR:  $40 W m^2$
- → Temperature up to ~90 km
- Power:
  - 1000 pps theoretical limit for monostatic system (150 km range)
  - ~200 pps todays <u>technical</u> limit for high energy system

~150 W

power

- Aperture:
  - 2.5 m telescope ~7  $m^2$  aperture
  - You know an astronomer and have 100,000\$ per night?
     10 m telescope ~80 m<sup>2</sup> aperture
- $\rightarrow$  Temperatures up to ~120 km (~135 km)

other methods? cf. Westerhoff & Svenson, JASTP, 2013



#### Summary and Outlook

- Lidars are powerful tools for measuring temperatures (and winds) and their variation in the MLT
- Combination of instruments (techniques) extends the altitude range (and the knowledge gain)
- Resonance lidar T ~80-105 km: Boltzmann vs. 2λ vs. scan → Pros and Cons
- Rayleigh lidar T <90 km (<120 km): top-down with limits at top, bottom-top still rare
- Increasing SNR: more power → ☺, larger aperture with drawbacks during the day (and night)
- What else: wind! metal densities, NO<sup>+</sup>, He, OH, PMC, meteoric dust, ...



