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Research Goal and Approach

o |[dentify, separate and quantify the relative importance of physical
mechanisms (thermospheric winds, thermal expansion, magnetospheric and
disturbance dynamo electric fields, plasmaspheric depletion and refilling,
Interhemispheric flow, composition changes, etc.) in the ionosphere-
thermosphere response to magnetic storms.

* Global, three-dimensional, time-dependent, non-linear coupled model of the
thermosphere, 1onosphere, plasmasphere, and electrodynamics (CTIPe)
physical model.

e Observational data from ground and space, such as ionosonde, GPS-TEC
provided by the Space Weather Prediction Center (SWPC) data assimilation
model in its global configuration (MAGIC), GUVI O/N2 ratio and CHAMP
neutral density are used to compare and support results provided by the
physical model.
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Research Goal and Approach

e Identify, separate and quantify the relative importance of physical
mechanisms (thermospheric winds, thermal expansion, magnetospheric and
disturbance dynamo electric fields, plasmaspheric depletion and refilling,
Interhemispheric flow, composition changes, etc.) in the ionosphere-
thermosphere response to magnetic storms.

F2 peak height changes at mid-latitudes during geomagnetic storms

t

Physical mechanisms: - thermospheric wind

- thermal expansion
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Thermospheric Winds
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e Upper Atmosphere and Magnetosphere. National Academy of Science, Washington DC, 1977.

Horizontal wind: driven by the pressure inequalities due to
temperature differences between polar and equatorial regions
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arises from the divergence (or
convergence) in horizontal winds, and represents the flow “across” the pressure levels
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Thermospheric Winds o)
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Thermospheric Winds o)

" LEVELS A vertical wind will be experienced

by the ions through collisions with the
neutral atmosphere.
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Thermospheric Wind Effect on the lonosphere

M ti . .
o fiold lin Poleward wind lowers the F2 layer while
equatorward wind raises F2 layer beyond the
Thermospheric normal diurnal variation from production,
wind lons and electrons . . . . .
—— spiralidc recombination, and diffusion (Miller et al., JGR,

1986). The same applies to storm-time winds.

High atmospheric density
IONOSPHERE results in increased electron
ion chemical recombination

200 km

Low atmospheric density
results in decreased
electron-ion chemical
recombination

lons and electrons
spiral up

I wind

Thermospheric

IONOSPHERE Richmond, A. D. The ionosphere.
In: Akasofu, S. I; Kamide, Y. (ed).

The solar wind and the earth.

200 k R
o Tokyo: Terra Scientific, 125-140,

1987.
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Thermospheric Wind Effect on the lonosphere ot

Magnetic

400 km S Method of determining meridional winds from
THemosnheri measurements of F2 layer height (Rishbeth et
lons and electrons al., 1978; Miller et al., 1986; Richards, 1991;

wind .
ﬁ spiral down Codrescu et al., 1992)

High atmospheric density
IONOSPHERE results in increased electron
ion chemical recombination

hmF2=hmF2,+a V,,,

200 km

Low atmospheric density hmF2, = F2 layer peak when the horizontal
results in decreased component meridional wind is zero
electron-ion chemical

recombination Vmag = horizontal component of the neutral

lons and electrons wind along the magnetic meridian
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IONOSPHERE Richmond, A. D. The ionosphere. Local time Magnetic
In: Akasofu, S. I; Kamide, Y. (ed). .
200 km The solar wind and the earth. dlp angle
Tokyo: Terra Scientific, 125-140,
1987.

Thermospheric
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Thermospheric Wind Effect on the lonosphere ot

Vertical wind = Divergence + Barometric

Magnetic
field line

. Vertical wind

IONOSPHERE

lons and electrons High atmospheric density
spiral down results in increased electron-
ion chemical recombination

SEA LEVEL PRESSU

Small effect -> Integrated effect->
plasma pushed out of plasma moving with
o equilibrium with its thermal expansion
Low atmospheric density . . . —_—
results in decreased surroundings remains in equilibrium
lons and electrons electron-ion chemical Wlth itS Surroundings

spiral up recombination

}

Numerical experiment to demonstrate
the height change experienced by the

IONOSPHERE

Adapted from Richmond, A. D.
The ionosphere. In: Akasofu, S.
Vertical wind I; Kamide, Y. (ed). The solar
wind and the earth. Tokyo:
Terra Scientific, 125-140, 1987.

lonosphere during geomagnetic storms
using CTIPe physical model.
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Coupled Thermosphere lonosphere Plasmasphere Model
with self-consistent Electrodynamics (CTIPe)

» Global thermosphere 80 - 500 km, solves momentum,
energy, composition, etc. V,, V,, V,, T, 0, Oy, N,, ....

« High latitude 1onosphere 80 -10,000 km, solves continuity,
momentum, energy, etc. O*, H*, O,", NO*, N,*, N*, V;, T,

« Plasmasphere, and mid and low latitude
lonosphere

» Self-consistent electrodynamics

e Forcing: solar UV and EUV, Weimer
electric field, TIROS/NOAA auroral
precipitation, tidal forcing
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Numerical Experiment: Impact of the Thermal Expansion
on Changes in the F2 Peak Height

In order to isolate the effect of thermal
expansion on F-region height from other -=CTlPe

. — CTIPe with additional heat source
mechanisms, a was
added to all CTIPe grid points ->
simulates the thermospheric heating
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Numerical Experiment: Impact of the Thermal Expansion
on Changes in the F2 Peak Height (onta)
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Fedrizzi et al., AGU Monograph on Mid-Latitude lonospheric Dynamics and Disturbances, accepted, 2008.
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Relative Contribution of Horizontal Winds and Thermal
Expansion in the Mid-latitude lonospheric-Thermospheric
Response to the March 31, 2001 Magnetic Storm

lonosonde Stations
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lonosonde x CTIPe
(March 31, 2001 Magnetic Storm)
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Relative Contribution of Horizontal Winds and

Thermal Expansion
(March 31, 2001 Magnetic Storm)
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Relative Contribution of Horizontal Winds and Thermal
Expansion in the Midlatitude lonospheric-Thermospheric
Response to the April 17, 2002 Magnetic Storm
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Relative Contribution —_

of Horizontal Winds
and Thermal
Expansion

(April 17, 2002 Magnetic
Storm)
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Summary

e Horizontal winds and thermal expansion account for most of the F2 peak
neight changes at mid-latitudes during geomagnetic storms.

Other mechanisms:

- disturbance dynamo and prompt penetration e-fields

- divergence winds

- upwelling and downwelling modifying the O/N2 ratio
- Interhemispheric flow

- plasmaspheric flux tube refilling

Uncertainties:

- CTIPe neutral winds
- constant of proportionality (l2l) computation
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S U m m ary (cont’d)

e Horizontal wind surge: plasma is pushed out of equilibrium, so
continually attempts to return to its original height after the wind has
abated.

» Thermal expansion effects: integrate over the duration of heating and
cooling events.

o Both horizontal wind and thermal expansion processes contribute
significantly to the F-region height changes during geomagnetic
storms. Their relative importance will depend on the local time at the
storm commencement, the spatial distribution of the energy at high
latitudes, the storm intensity, development and recovery duration.
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