

Comparing <u>momentum flux</u> of mesospheric <u>gravity waves</u> using different background measurements and their impact on the background wind field

Mitsumu K. Ejiri, Michael J. Taylor, and P. Dominique Pautet, Center for Atmospheric and Space Sciences, Utah State University

Alan Z. Liu, and Steven J. Franke

Department of Electric and Computer Engineering, University of Illinois at Urbana-Champaign

Outline

Introduction

Instrumentation at Maui-MALT, Hawaii

- Mesospheric Temperature Mapper (MTM)
- Na Wind/Temperature Lidar
- Meteor Wind Radar
- Case study 1:

Radar vs. Lidar for Momentum Flux Studies

Case study 2:

Gravity Wave-Critical Level Interaction Conclusions

Thermosphere

 $\overbrace{F_{M}}^{\text{Impact on Background}} wind and/or temperature$

Mesosphere
Why study gravity waves (GW)?
Why measure momentum flux (F_M)?

Stratosphere

F_M **Gravity wave**

Troposphere

~12 km

~100 km

~50 km

Momentum Flux Calculations for Quasi-Monochromatic Events

• Momentum Flux (F_M) equations:

k: horizontal wave number c: horizontal phase speed I: Intensity

 $F_{\rm M} = \frac{k}{m} \cdot \frac{g^2}{N^2 \cdot CF^2} \cdot \left(\frac{l'}{\bar{I}}\right)^2 - \dots \text{ (1) assumption of "}\lambda_{\rm h} >> \lambda_{\rm z}"$ [Swenson and Liu, 1998] $F_{\rm M} = \frac{k \cdot m}{(k^2 + m^2)} \cdot \frac{g^2}{N^2 \cdot CF^2} \cdot \left(\frac{l'}{\bar{I}}\right)^2 - \dots \text{ (2) assumption of "}\lambda_{\rm h} \sim \lambda_{\rm z}"$

m: vertical wave number u: background wind T: background temperature N: Brunt-Väisälä frequency H: scale height g: gravity acceleration CF: Cancellation factor C_p: adiabatic laps rate

Qu: What quality background data are needed for F_M?

$$\binom{m^{2} = \frac{N^{2}}{(c-u)^{2}} - k^{2} - \frac{1}{4 \cdot H^{2}}}{N^{2} = \frac{g}{T} \cdot \left(\frac{dT}{dz} - \frac{g}{C_{p}}\right) \sim 4.0 \times 10^{-4} \text{ [rad/sec]}}{H = \frac{RT}{g} \sim 6.0 \text{ [km]}}$$

Plan

- We compare results of F_M (for GWs observed by the MTM) calculated using:
 - Na wind/temperature lidar data (exhibiting high time and vertical resolution)
 - meteor wind radar (with lower resolution as compared to Na lidar but constant operation)
 - We investigate the advantages of each method for F_M estimations.

• Using a case study of GW dissipation associated with wind filtering at a critical level, we quantify the impact from the GW on the background wind field.

Cedar 2007 Case Study 1: Radar vs. Lidar for Event Momentum Flux Estimates

Station

- Maui-AEOS Facility Hawaii (20.8°N, 156°W)
- Data
 - Mesospheric Temperature Mapper (MTM)
 - → GW propagation parameters, intensity perturbations
 - Na Wind/Temperature Lidar → Background wind and temperature
 - Meteor Wind Radar → Background wind

Simultaneous Observations

4 events (2 nights)

Date	UT	Emission	λո [km]	c [m/s]	Period [min]	Direction [°]	DI/I
Jul. 9, 2002	11:30	OH	35.5	51	11.6	63.7	9.5
		O2	52.8	51.8	17.0	69.4	12
	14:30	OH	41.3	44	15.6	99.8	12.5
		O2	42	46.8	15.0	100	8.9
Aug. 12, 2004	7:30	OH	26.9	38.3	11.7	57.9	5.3
		O2					
	13:00	OH	22.1	26.9	13.7	103.7	3.6
		O2	23.9	25.3	15.7	105.5	3.7

Event #1: July 9, 2002, 11:30 UT

F_M Results (Event #1)

F_M(Radar) ≈ 1 hr average F_M(Lidar)

Conclusion 1

- F_M calculated using revised assumption (λ_z~λ_h) gives significant lower values (> ~30%) than method used in previous studies (λ_z<<λ_h).
- Background wind profiles are more critical for estimating vertical wavelength and F_M than background temperature data.
- F_M (radar wind) ~ 1 hr average F_M (Na lidar wind & temp.)
- Thus:

Under typical mesospheric conditions, Meteor Radar wind data (combined with constant N value) produces reasonable estimates of the wave event F_M for long-term studies.

Qu: What happens to a GW at a Critical Level?

Ex. of GW-CL Interaction (June 29, 2003)

- Strong Diurnal-Tide
- GW dissipation at O2
- GW dissipation at OH

CEDAR 2007

Cause of Wave Disappearance?

CEDAR 2007

Effect of Critical Level on AR 2007 CED **GW** Parameters and **F**_M Intrinsic Phase Speed (c-u) **Intrinsic phase speed** (c-n) [m/s] decreases -20 11 1 Hour [UT] Vertica: Wave:ength **Vertical wavelength** OH λ_z [km] decreases) 11 Hour [UT] Momentum Flux F_{M} [m²/s²] Average $F_M \sim 7 \text{ m}^2/\text{s}^2$) 11 Hour [UT]

Effects of Wave Dissipation on Background Winds?

CEDAR 2007

Wind change caused by the wave dissipation:
 ∆u = F_M×∆t / H ~ 5.8 m/s/hr [Fritts et al., 2002]
 Wave dissipation ∆u at the CL ~ 50% of Tidal ∆u

Conclusion 2

- The GW dissipation was caused by wind filtering at a strong critical level (CL) that was generated by downward phase progression associated with the diurnal tide.
- The observed GW-CL interaction impacted the background wind (resulting in an acceleration), but not the background temperature (not shown).
- Comparison of acceleration due to the diurnal tide and due to GW dissipation at the CL suggests that F_M from short-period GWs (as observed by the MTM) has the capability to significantly accelerate the background wind field (in this case $\Delta u \sim 50\%$ of tidal effect).
- In general, the GW-CL interaction is quite an efficient mechanism, not only for wind filtering of GW propagation but also for wind acceleration by dissipating GW.

Acknowledgements

Co-author: Dr. Alan Z. Liu Co-author: Dr. Steven J. Franke Co-author: Dr. Dominique Pautet Colleague: Dr. Yucheng Zhao Colleague: Dr. Bill Pendleton Advisor: Dr. Michael J. Taylor

Effects of Wave Dissipation on Background Temperature?

Critical Level Event O₂ • OH

Comparison of ρF_M between OH and O_2

 \rightarrow GW lose F_M during upward propagation.

Comparing momentum flux of mesospheric gravity waves using different background measurements and there impact on the background wind field

Mitsumu K. Ejiri CEDAR Post Doc Utah State University

F_M Results (Event #1)

F_M(Radar) ≈ 1 hr average F_M(Lidar)