## Imaging the Ionosphere Using Spaceborne Synthetic Aperture Radar

Xiaoqing Pi

Jet Propulsion Laboratory California Institute of Technology

#### Acknowledgment

Bruce Chapman (JPL), Anthony Freeman (JPL) Masanobu Shimada (JAXA), Franz Meyer (U. Alaska) Alaska Satellite Facility & International GNSS Service

Government Sponsorship Acknowledged

CEDAR Workshop, Santa Fe, NM, June 28, 2010



### **Earth Science Radar Missions**



Global Sea Surface Salinity Launched in June 2011

## SMAP - Radar - Radiometer

Global Soil Moisture To be launched in 2015 ALOS Advanced Land Observing Satellite, JAXA's InSAR mission launched in Jan 2006. (ALOS-2 will follow.)

#### DESDynl

Deformation, Ecosystem Structure, and Dynamics of Ice NASA InSAR Mission Under study





#### Advanced Land Observing Satellite Phase Array type L-band SAR



#### ALOS (JAXA) Orbit

- ~690 km ALT
- I = 98° (Sunsynchronous 10 AM/10 PM)
- Repeat period: 46 days

#### PALSAR

- L-band: 1.27 GHz
- Signal chirp bandwidth: 28 MHz or 14 MHz for single-pol or multi-pol obs modes
- Experimental quad-pol mode among other observation modes HH, HV, VH, and VV
- Polarimetric image pixel spacings (resolutions)
  Along track (azimuth) = 3.6 m
  Cross track (range) = 9.4 m
  Cross track (ground) = 23.3 m



## **Faraday Rotation and TEC**



The effect is less sensitive near or at the magnetic equator for a nominal SAR system as  $\theta$  approaches 90° and cos $\theta$  becomes very small.



#### Faraday Rotation Measurements Using PolSAR

• Polarimetric measurements (scattering matrix):

$$\begin{pmatrix} M_{hh} & M_{vh} \\ M_{hv} & M_{vv} \end{pmatrix} = A(r,\theta)e^{j\phi} \begin{pmatrix} 1 & \delta_2 \\ \delta_1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & f_1 \end{pmatrix} \begin{pmatrix} \cos \Omega & \sin \Omega \\ -\sin \Omega & \cos \Omega \end{pmatrix} \begin{pmatrix} S_{hh} & S_{vh} \\ S_{hv} & S_{vv} \end{pmatrix}$$
$$\cdot \begin{pmatrix} \cos \Omega & \sin \Omega \\ -\sin \Omega & \cos \Omega \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & f_2 \end{pmatrix} \begin{pmatrix} 1 & \delta_3 \\ \delta_4 & 1 \end{pmatrix} + \begin{pmatrix} N_{hh} & N_{vh} \\ N_{hv} & N_{vv} \end{pmatrix}$$

Or 
$$\mathbf{M} = Ae^{j\phi}\mathbf{R}^{\mathrm{T}}\mathbf{R}_{\mathrm{F}}\mathbf{S}\mathbf{R}_{\mathrm{F}}\mathbf{T} + \mathbf{N}$$

- System calibration [Freeman, 2004; Freeman et al., 2008; Shimada et al., 2009]:
  - Calibration without or with Faraday rotation
- Deriving Faraday rotation image using Bickel and Bates' approach [1965]:

$$\begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} = \begin{bmatrix} 1 & j \\ j & 1 \end{bmatrix} \begin{bmatrix} M_{hh} & M_{hv} \\ M_{vh} & M_{vv} \end{bmatrix} \begin{bmatrix} 1 & j \\ j & 1 \end{bmatrix}, \qquad \Omega = \frac{1}{4} \arg \left( Z_{12} Z_{21}^* \right)$$



### **Polarimetric SAR Images**

#### PALSAR Observation 04-01-2007, Alaska: GLAT = ~62.2°, GLON = ~214.5° during a geomagnetic storm



HHHVVHVVFRSize of individual images: 18432 x 1248 pixels, ~ 66 km x 29 km.



# SAR Polar Ionospheric Images during Storm and Quiet Days

- Faraday rotation images on two days
  - > 04-01-2007 (storm)
  - ➤ 05-17-2007 (quiet)
  - (repeat orbit, 46 days) when PALSAR illuminated the same area.
- Significant ionospheric difference between the two days.
- The ionospheric arc seen in the 4-1-2007 data is associated with an auroral arc when a geomagnetic storm occurred on 4/1/2007.



#### Polar Ionospheric Arcs Captured in Polarimetric SAR images





#### Ionospheric Irregularities Measured Using GPS in and near the ALOS Path

#### Red Track: ALOS-PALSAR Path



- Ionospheric irregularities were captured by a GPS receiver at Fairbanks, Alaska, tracking L1 and L2 signals transmitted from PRN-08 satellite.
- At ~07:28 UT, GPS data show TEC perturbations in and near the regions of an ALOS-PALSAR path.



#### Snapshot of Ionospheric Irregularities Measured Using GPS



- Dual-frequency GPS observations from 58 stations in the polar region (LAT  $\geq$  50°) are processed to produce rate of TEC (ROT) and rate of TEC index (ROTI) measurements
- Increased ROTI values indicate ionospheric irregularities during the storm
- The ALOS-PALSAR passed through a perturbed ionospheric region



#### **Comparison of SAR and Auroral Images**





#### Mid-Latitude Ionospheric Gradient Captured in PoISAR Images





## Imaging TID's at Middle Latitudes





#### Ionospheric Scintillation and Plasma Bubbles





#### TEC Depletion and Irregularities Measured Using GPS



Ionospheric Irregularities /scintillation were observed in the ALOS-PALSAR path before ALOS passed by.



#### Ionospheric Irregularities Observed Using GPS near a PALSAR Path



Ionospheric Irregularities /scintillation were observed near the ALOS-PALSAR path when ALOS passed by.



## **Effects of Ionospheric Scintillation**



Example of streaks in PALSAR images (effects on ionospheric scintillation)



A survey of scintillation effects during Oct 2010 (with Meyer and Chotoo):

- Total images: 2779
- 14% Images and 74% days affected





## Summary (Cont.)

#### Advantages

- High resolution: a few hundred meters → ~2 km
- Much less sensitive to weather
  No concerns about light sources
  No day/night restriction
- Global coverage
- A new and powerful technique to explore further ionospheric inhomogeneities and irregularities
- Will support InSAR and PolSAR ionospheric calibration to ensure Earth imagery quality (PolSAR, Split spectrum, etc.)
- Potential to realize lower frequency SAR (P-band)
- A single mission serves both Earth and space sciences

#### Limitations

- Very significant data amount with the quad-pol approach
  - requires extraordinary data downlink capacity for continuous operation
- Split-spectral technique can only measure TEC difference under certain conditions
- Limited local time coverage
  - Sun-synchronous orbits
- Relatively low temporal resolution (orbital observations)