AMPERE

Continuous Global Birkeland Currents from the Active Magnetosphere and **Planetary** Electrodynamics Response Experiment

Brian J Anderson, The Johns Hopkins University Applied Physics Laboratory

COSPAR 2008, D36-5, 18 July 2008 11:30

Partners

Sponsor National Science Foundation

AMPERE

Data provider Boeing Service Company

·:· iridium

Data source Iridium Satellite LLC

PI Institution, Science Data Center The Johns Hopkins University Applied Physics Laboratory

Iridium Constellation for Science

- Magnetometer on every satellite
 - Part of avionics
 - 30 nT resolution: S/N ~ 10
- >70 satellites, 6 orbit planes, ~11 satellites/plane
- Six orbit planes provide 12 cuts in local time
- 9 minute spacing: re-sampling cadence
- 780 km altitude, circular, polar orbits
- Polar orbits guarantee coverage of auroral zone
- Global currents never expand equatorward of system

Analysis for ∆B, j_{II}

- Cross track ΔB , vector ΔB map via spherical harmonic fit
- j_{||} from Ampere's law (arbitrary geometry, no stats or cond.)
- Fit residual 2-sigma ~ 70 nT, ~0.1 to 0.2 μ A/m²
- Lat res: ~4° for 1-hour accumulation

The lonospheric electrodynamics view

Convection $\mathbf{E}_c = -\mathbf{V}_c \times \mathbf{B} \qquad \mathbf{E}_c = -\nabla \varphi$

Horizontal currents $\mathbf{J}_{\perp,i} = \underline{\Sigma} \cdot \mathbf{E}_c = \Sigma_P \mathbf{E}_c + \Sigma_H \mathbf{b} \times \mathbf{E}_c$

 ψ = equivalent current potential

Birkeland currents $J_{\parallel} = \nabla \cdot \mathbf{J}_{\perp,i} = \nabla \cdot (\underline{\Sigma} \cdot \mathbf{E}_c)$

Electrodynamics equations: 2 eqs, 5 unknowns

$$\nabla^{2} \psi = \Sigma_{\mathrm{H}} \nabla^{2} \varphi + \nabla \Sigma_{\mathrm{H}} \cdot \nabla \varphi + \hat{\mathbf{r}} \cdot (\nabla \Sigma_{\mathrm{P}} \times \nabla \varphi)$$
$$J_{\parallel} = -\Sigma_{\mathrm{P}} \nabla^{2} \varphi - \nabla \Sigma_{\mathrm{P}} \cdot \nabla \varphi + \hat{\mathbf{r}} \cdot (\nabla \Sigma_{\mathrm{H}} \times \nabla \varphi)$$

Quantity	Technique	Strengths	Operational Considerations
$oldsymbol{\varPsi}$ Equivalent currents	Ground magnetometers	Excellent time resolution; continuous data; coverage improving in latitude, density and southern hemisphere	Non-uniform coverage (oceans, concentration at nominal auroral latitudes, local time gaps)
\$\$ Potential convection	SuperDARN: mid-latitudes	Broad field of regard; continuous operation; both hemispheres; 2-min cadence; 10s km resolution	Requires irregularities; D- region absorption (mitigated somewhat by mid-latitude radars)
	IS radars	Indep. of conditions	Focussed (limited) coverage (few sites)
	LEO ion drift	Direct ion drift observations	100 minute revisit timeRestricted local time cuts(4)
$\Sigma_{\mathrm{P}}, \Sigma_{\mathrm{H}}$	IS radars	Accurate density meas.	Focussed (limited) coverage (few sites)
	UV imaging	Hemispheric image	Significant uncertainties Not operational routinely
J ∥ Birkeland currents	LEO mags	Direct signature of currents	Iridium: long accumulation times (>2 hrs) Other: ~3 satellites, 100 minute revisit time, Requires geometrical assumptions
	AMPERE	Direct signature of currents >70 satellites 9 minute revisit time 12 local time cuts	30 nT resolution – S:N ~ 10:1 Latitude resolution: 1° nominal Event driven sub-degree sampling

Other applications

E-M Energy Flux No δ B, no S_z $|\delta$ B| locates regions of S_z

$$S_{\rm Z} = \frac{1}{\mu_0} \mathbf{E}_{\rm c} \times \delta \mathbf{B}$$

Useful for assimilation Global and 'uniformly' distributed Fundamental physical quantity: $\delta \mathbf{B}$ or j_{\parallel} Relevant to multiple efforts Ongoing: AMIE, GAIM Potential: RCM, MHD

- Existing 200-s sampling often misses signatures
- 2-s sampling captures small-scale features
- 20-s sampling captures all large scale currents
- 30-nT resolution is sufficient

Telemetry Issue & Solution

SC health telemetry packet

MAG samples (0.1% of total)

- Existing system:
 - Magnetometer data embedded in satellite engineering data packet
 - Enormous quantity of engineering data: voltages, currents, temperatures, other attitude sensors, RF system (rec'd intensities), power system (arrays/batteries), computer/memory monitors ...
- Modification:
 - Use alternate path: event message. Designed for satellite to report 'event' of interest to operators
 - New software to query magnetic field from attitude system processor
 - Pack set of magnetic samples (~10 to 100) in an event message.
 - Event messages delivered in continuously, sequentially (SV001, 002 ...) using satellite network to ground station in true real-time

AMPERE: Boeing/Iridium - Data Provider

- Iridium system upgrade: concept in place and ready
 - satellite constellation flight software
 - ground system development
- Real-time data stream
- Store & dump data: fill any gaps; definitive orbit/attitude

AMPERE Development Effort

- Space software upgrade and installation
- Ground data system to extract and archive data at Iridium operations center
- Data exchange to Science Data Center at JHU/APL
- AMPERE Science Data Center: capability to ingest real-time, 24/7 data and process data products
- Promotion to highest rate:
 - 2 s on all satellites (normally ~20 s)
 - 36-hour promotion span
 - 16 per year
 - Effected in ~1 hour

Fall 2009 **Release of upgraded** 'historical' data (1999-present) **Dec 2009** First 'light' Testing and validation CY 2010 Real-time development CY 2011 'Burst' promotion CY 2012 Completion May 2013

 Release of products will occur during development as they are ready