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From Discovery to System Science

Data sets
• Heterogeneous data 

sources
• Distributed arrays of 

small instruments

Model 
development
• Assimilation
• Nudging

Forecasting

• CEDAR science is transitioning
• Data science fundamentals are 

increasingly needed
• Enabling new science from existing data
• Designing new sensing modalities
• Utilizing data to make forecasts



Advent of Data Science
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Big Data Elements
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Advance the core scientific and technological means of managing, 
analyzing, visualizing and extracting information from large, diverse, 
distributed, and heterogeneous data sets in order to accelerate progress 
in science and engineering research. Specifically, it includes research to 
develop and evaluate new algorithms, technologies, and tools for 
improved data management, data analytics, and e-science collaboration 
environments.

“In the same way that past Federal investments in information-technology 
R&D led to dramatic advances in supercomputing and the creation of the 
Internet, the initiative we are launching today promises to transform our 
ability to use Big Data for scientific discovery...”
Dr. John P. Holdren, Assistant to the President and Director of the White House Office 
of Science and Technology Policy.



Data Analytics Elements

5

Data to Information: powerful approaches for turning data into 
information – machine learning, cloud computing, and crowd sourcing.

Data to Decisions: Harness and utilize massive data in new ways and bring 
together sensing, perception and decision support to make truly 
autonomous systems that can maneuver and make decisions on their 
own.

Human-Computer Interaction: Developing scalable algorithms for 
processing imperfect data in distributed data stores; and Creating 
effective human-computer interaction tools for facilitating rapidly 
customizable visual reasoning for diverse missions.



Data Science: Data Life Cycle
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- Data management policies, 
including access and dark 
data

- Communication and 
storage technologies with 
extreme capacities

- Learning, 
inference, 
prediction and 
knowledge 
discovery for large 
volume and 
dynamic data

- Tools for distant 
data sharing, real-
time visualization, 
and software reuse 
of complex 
datasets

- Cross disciplinary 
information and 
knowledge 
sharing; 
interoperability

Data Life Cycle 

Collection, Storage and 
Management 

Data Analytics

Data Sharing and 
Collaboration

- Data mining
to enable 

automated 
hypotheses, event 
correlation and 
anomaly 
detection

- Computational, 
mathematical, 
statistical and 
algorithmic 
techniques for 
modeling high 
dimensional data

- Remote operation 
and real-time 
access to 
distributed data

- Data representation, 
storage and retrieval

Here we focus on Data Analytics

Encourage the publication of all science products so 
they are discoverable and accessible, to enable 
reproducibility, and to ensure that they can be adapted
to solve new problems.





Basic Elements of Learning Theory (using simple applications)

• Many core data science elements can be introduced using 
very simple, yet powerful, ideas.



Linear Regression

• A linear relationship clearly exists. How might 
this be established, mathematically?

• Among all possible lines, choose the line that 
is the closest to the data (in some sense).
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Linear Regression

• A linear relationship clearly exists, but there is 
an erroneous data point (an outlier).



Linear Regression

• A linear relationship clearly exists, but there is 
a erroneous data point (an outlier).

• Outliers do not represent the true 
relationship, but change the relationship that 
is inferred.



Outliers

• How might we handle outliers?
We could remove them manually.

We could explore the data for patterns 
that identify an outlier boundary. 
(unsupervised learning)

We could train a classifier using a set of 
manually-identified outliers. 
(supervised learning)



Clustering

• Relative to outliers, data model errors often 
form a cluster.



Clustering

• How might we identify the cluster? One approach:
1. Start with a random outlier boundary.
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Clustering

Repeat the process until 
memberships stop 
changing.

• How might we identify the cluster? One approach:
1. Start with a random outlier boundary.
2. Calculate the means of the two groups (call them clusters).
3. Assign each data point to the nearest mean.



Clustering

• This is known as 1D k-means 
clustering.

final result



Binary Classification

• If we have a collection of manually-identified outliers, we could infer
an outlier boundary using the entire collection to predict the validity 
of new data.

manually-labeled outliers

valid data



Binary Classification

• One approach: assume that outliers occur as the result of weighted 
coin tosses.

• Parameterize the coin weight and choose the boundary that maximizes the 
probability of the entire dataset occurring (“maximum likelihood”).

Bernoulli distribution



Binary Classification

• One approach: assume that outliers occur as the result of weighted 
coin tosses.

• Parameterize the coin weight and choose the boundary that maximizes the 
probability of the entire dataset occurring. (“maximum likelihood”).

manually-labeled outliers

valid data

learned boundary



Dimensionality Reduction



• Data can be expanded using a fixed basis (e.g., Fourier series; 𝜔𝜔 = 𝑛𝑛𝜔𝜔0).

Dimensionality Reduction—Familiar Example

(Fourier series expansion) (low-dimension approximation)



Dimensionality Reduction—More General Ex.

• Does this data exist across two 
dimensions?

• Technically, yes.
• Practically…?

• How might we assess the true
dimensionality of the dataset?



Dimensionality Reduction

• One possible approach:
• Find the rotational change of basis 

that best explains the dataset 
variance.

(sample covariance)

2 x N matrix of data



• The eigenvalues and eigenvectors of the sample covariance describe the 
appropriate change of basis.

• What if we project onto the direction of the eigenvector with the largest 
eigenvalue? 

Dimensionality Reduction

(diagonalized sample covariance)

matrix of
eigenvectors

diagonal matrix of
eigenvalues



Dimensionality Reduction

• In this example, 94% of the 
dataset variance lies in a one-
dimensional subspace.

• The data is “almost” one-
dimensional!

• This is known as principal 
component analysis.



• Principal component analysis learns a basis for the data that is adaptive.
• This is directly related to the singular value decomposition (SVD) of the data 

matrix.

Dimensionality Reduction

(singular value decomposition) (low-rank approximation)



A system Identification Perspective of Learning Theory



System Identification

• If input and output data from an unknown system is available, how 
can we “discover” information about the system?



Linear, Time-Invariant System Identification

• Relationships in the sciences are often described by linear differential 
equations (e.g., Maxwell’s equations).

• In discrete-time (i.e., in data space), these relationships are described 
using difference equations.



• A general version: rational transfer function models

Linear, Time-Invariant System Identification



• A more workable class of models: rational transfer function models

• A, B, C, D, F are lag polynomials, e.g.,

Linear, Time-Invariant System Identification



• A more workable class of models: rational transfer function models

• A, B, C, D, F are lag polynomials, e.g.,
• The system is defined by the weights on past samples of the input, 

output, and noise.

Linear, Time-Invariant System Identification



Linear, Time-Invariant System Identification

• Many well-known linear system models fall into this category, 
depending on which polynomials are used.

• 𝐵𝐵 𝑞𝑞 : finite-impulse response (FIR)
• 𝐴𝐴 𝑞𝑞 : autoregressive (AR)
• C(𝑞𝑞): moving average (MA) 
• 𝐴𝐴 𝑞𝑞 ,𝐶𝐶 𝑞𝑞 : autoregressive moving average (ARMA)
• 𝐴𝐴 𝑞𝑞 ,𝐵𝐵 𝑞𝑞 : autoregressive w/ exogeneous input (ARX)
• 𝐴𝐴 𝑞𝑞 ,𝐵𝐵 𝑞𝑞 ,𝐶𝐶(𝑞𝑞): autoregressive moving average w/ exogenous input (ARMAX)
• 𝐵𝐵 𝑞𝑞 ,𝐹𝐹(𝑞𝑞): output error (OE)
• 𝐵𝐵 𝑞𝑞 ,𝐹𝐹 𝑞𝑞 ,𝐶𝐶 𝑞𝑞 ,𝐷𝐷(𝑞𝑞): Box-Jenkins (BJ)

37



Linear, Time-Invariant System Identification

38

• Given input and output data, how might we estimate the system, or, 
equivalently, estimate the parameter vector 𝜽𝜽?



Linear, Time-Invariant System Identification

• Given input and output data, how might we estimate the system, or, 
equivalently, estimate the parameter vector 𝜽𝜽?

• One approach: choose 𝜽𝜽 that leads to the smallest (in some sense) one-step
prediction error

39

e.g., 𝑓𝑓 = 𝑥𝑥2 (minimization in the least 
squares sense)



Nonlinear, Time-Varying Systems
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• Systems often exhibit nonlinear behavior, and may change over time.

• The general approach is the same as the LTI case, but the functional 
form of the one-step prediction error is more general.

fixed window of past input and output data



Nonlinear, Time-Varying Systems

• Common approach: expand the mapping using a basis

• Examples: 
• Wavelet expansions (𝑔𝑔𝑘𝑘 are then dilated and scaled versions of a “mother” 

basis function) 
• Sigmoid, tanh, Gaussian functions

41



Nonlinear, Time-Varying Systems

• Layered/composed expansions are neural networks.

42



Nonlinear, Time-Varying Systems

43

• Layered/composed expansions are neural networks.



Nonlinear, Time-Varying Systems

• Time-varying systems can be described using recurrent networks.

1-sample delay

44



Learning Theory Caveats and Open Directions

• With nonlinear systems, cost function minimization presents 
special challenges.

• Nonlinear cost functions are usually non-convex, and have many local 
minima.

• Solutions for 𝜽𝜽 that have the lowest minimization error do not 
necessarily perform well on new data (poor generalization 
error).

• Understanding the behavior of generalization error in different 
situations is currently a very active topic of research in machine 
learning and data science.

• Validation data sets are critical
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