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From Discovery to System Science

* CEDAR science is transitioning

* Data science fundamentals are
increasingly needed
* Enabling new science from existing data
* Designing new sensing modalities
 Utilizing data to make forecasts




Advent of Data Science
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OBAMA ADMINISTRATION UNVEILS “BIG DATA” INITIATIVE:
ANNOUNCES $200 MILLION IN NEW R&D INVESTMENTS

Aiming to make the most of the fast-growing volume of digital data, the Obama
Administration today announced a “Big Data Research and Development Initiative.” By
improving our ability to extract knowledge and insights from large and complex
collections of digital data, the iniiative promises to help solve some the Nation's most
pressing challenges.

To launch the initiative, six Federal departments and agencies today announced more
than $200 million in new commitments that, together, promise to greatly improve the
tools and techniques needed to access, organize, and glean discoveries from huge
volumes of digital data.

“In the same way that past Federal investments in information-technology R&D led to
dramatic advances in supercomputing and the creation of the Intemet, the initiative we
are launching today promises to transform our ability to use Big Data for scientific
discovery, environmental and bicmedical research, education, and national security,”
said Dr. John P. Holdren, Assistant to the President and Director of the White House
Office of Science and Technology Policy.

To make the most of this opportunity, the White House Office of Science and
Technology Policy (OSTP)—in concert with several Federal departments and
agencies—created the Big Data Research and Development Initiative to:

« Advance state-of-the-art core technologies needed to collect, store, preserve,
manage, analyze, and share huge quantities of data.

« Hamess these technologies to accelerate the pace of discovery in science and
engineering, strengthen our national security, and transform teaching and
leaming; and

+ Expand the workforce needed to develop and use Big Data technologies.



Big Data Elements

Advance the core scientific and technological means of managing,
analyzing, visualizing and extracting information from large, diverse,
distributed, and heterogeneous data sets in order to accelerate progress
in science and engineering research. Specifically, it includes research to
develop and evaluate new algorithms, technologies, and tools for
improved data management, data analytics, and e-science collaboration
environments.

“In the same way that past Federal investments in information-technology
R&D led to dramatic advances in supercomputing and the creation of the
Internet, the initiative we are launching today promises to transform our
ability to use Big Data for scientific discovery...”

Dr. John P. Holdren, Assistant to the President and Director of the White House Office
of Science and Technology Policy.



Data Analytics Elements

Data to Information: powerful approaches for turning data into
information — machine learning, cloud computing, and crowd sourcing.

Data to Decisions: Harness and utilize massive data in new ways and bring
together sensing, perception and decision support to make truly
autonomous systems that can maneuver and make decisions on their
own.

Human-Computer Interaction: Developing scalable algorithms for
processing imperfect data in distributed data stores; and Creating
effective human-computer interaction tools for facilitating rapidly
customizable visual reasoning for diverse missions.



Data Science: Data Life Cycle
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Here we focus on Data Analytics



Gartner Hype Cycle for Emerging Technologies, 2017
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Basic Elements of Learning Theory (using simple applications)

* Many core data science elements can be introduced using
very simple, yet powerful, ideas.



Linear Regression
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* A linear relationship clearly exists. How might
this be established, mathematically?

* Among all possible lines, choose the line that
is the closest to the data (in some sense).

m,b = argmlnzd(m b, x;,y;)
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* A linear relationship clearly exists. How might
this be established, mathematically?

* Among all possible lines, choose the line that
is the closest to the data (in some sense).
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Linear Regression
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* A linear relationship clearly exists, but there is

S an erroneous data point (an outlier).
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Linear Regression
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* A linear relationship clearly exists, but there is
ol a erroneous data point (an outlier).
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Outliers
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* How might we handle outliers?

We could remove them manually.

We could explore the data for patterns
that identify an outlier boundary.
(unsupervised learning)

We could train a classifier using a set of
manually-identified outliers.

(supervised learning)



Clustering
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* Relative to outliers, data model errors often
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Clustering

* How might we identify the cluster? One approach:
1. Start with a random outlier boundary.
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d(m*a b*’ xi ’ yl)



Clustering

* How might we identify the cluster? One approach:
1. Start with a random outlier boundary.
2. Calculate the means of the two groups (call them clusters).
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Clustering

* How might we identify the cluster? One approach:
1. Start with a random outlier boundary.
2. Calculate the means of the two groups (call them clusters).
3. Assign each data point to the nearest mean.
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Clustering

* How might we identify the cluster? One approach:
1. Start with a random outlier boundary.
2. Calculate the means of the two groups (call them clusters).
3. Assign each data point to the nearest mean.

Repeat the process until
® memberships stop
changing.

I
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Clustering

* How might we identify the cluster? One approach:
1. Start with a random outlier boundary.
2. Calculate the means of the two groups (call them clusters).
3. Assign each data point to the nearest mean.
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® memberships stop
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Clustering

* This is known as 1D k-means
clustering.

final result
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Binary Classification

* If we have a collection of manually-identified outliers, we could infer
an outlier boundary using the entire collection to predict the validity
of new data.

manually-labeled outliers 1 - -

valid data 0 |-. ouo-culo.-o anen | | |
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Binary Classification

* One approach: assume that outliers occur as the result of weighted
coin tosses.

e Parameterize the coin weight and choose the boundary that maximizes the
probability of the entire dataset occurring (“maximum likelihood”).

/ Bernoulli distribution

m., b.= argmax HP()’; ld(m’,b",x;,y,),m.,b.)
m,b



Binary Classification

* One approach: assume that outliers occur as the result of weighted
coin tosses.

e Parameterize the coin weight and choose the boundary that maximizes the
probability of the entire dataset occurring. (“maximum likelihood”).

manually-labeled outliers 1 -

learned boundary

valid data O I-o ono-u.:.o s | | |
0 5 10 15 20
S
dim,b,x;,y;)




Dimensionality Reduction



Dimensionality Reduction—Familiar Example

* Data can be expanded using a fixed basis (e.g., Fourier series; w = nw).

f(t)_ on-1 on-1

> sin ((2n-1) w,f) 4A kL sin ((2n-1) w,?)
— /\4 G T

n

T Y Y A

(Fourier series expansion) (low-dimension approximation)



Dimensionality Reduction—More General Ex.

. * Does this data exist across two
I dimensions?

L e Technically, yes.

* Practically...?

* How might we assess the true
dimensionality of the dataset?




Dimensionality Reduction

. * One possible approach:

AN * Find the rotational change of basis
o that best explains the dataset
variance.

l 2 x N matrix of data

~  XX!
2= (sample covariance)

B .. N— ]




Dimensionality Reduction

* The eigenvalues and eigenvectors of the sample covariance describe the
appropriate change of basis.

> = UAUT (diagonalized sample covariance)

AN

matrix of diagonal matrix of
eigenvectors eigenvalues

* What if we project onto the direction of the eigenvector with the largest
eigenvalue?



Dimensionality Reduction

explained variance: 94%

* In this example, 94% of the
dataset variance lies in a one-
dimensional subspace.

e The data is “almost” one-
dimensional!

* This is known as principal
component analysis.



Dimensionality Reduction

* Principal component analysis learns a basis for the data that is adaptive.

* This is directly related to the singular value decomposition (SVD) of the data
matrix.

> =UAU"

X=N-1 quv ~ N-T quv

(singular value decomp05|t|on) (low-rank apprOX|mat|on)




A system ldentification Perspective of Learning Theory



System ldentification

* If input and output data from an unknown system is available, how
can we “discover” information about the system?

[ )




Linear, Time-Invariant System Identification

* Relationships in the sciences are often described by linear differential
equations (e.g., Maxwell’s equations).

* In discrete-time (i.e., in data space), these relationships are described
using difference equations.

ylnl + 2y[n — 1] = 3z[n] + z[n - 2|



Linear, Time-Invariant System Identification

* A general version: rational transfer function models




Linear, Time-Invariant System Identification

A more workable class of models: rational transfer function models




Linear, Time-Invariant System Identification

A more workable class of models: rational transfer function models

1

* A, B, C,D,Fare lag polynomials, e.g., A(q) =1+ aiq"' + -+ an, ¢ "™

* The system is defined by the weights on past samples of the input,
output, and noise.

9:[6L1 as ... anabl b2 bnbfl f2 fnfcl Co ... Cncdl da ... dnd]T



Linear, Time-Invariant System Identification

* Many well-known linear system models fall into this category,
depending on which polynomials are used.

* B(q): finite-impulse response (FIR)

* A(q): autoregressive (AR)

* C(gq): moving average (MA)

* A(q), C(q): autoregressive moving average (ARMA)

* A(q), B(q): autoregressive w/ exogeneous input (ARX)

« A(q),B(q),C(q): autoregressive moving average w/ exogenous input (ARMAX)
* B(q), F(q): output error (OE)

* B(q),F(q),C(q),D(q): Box-Jenkins (BJ)



Linear, Time-Invariant System Identification

* Given input and output data, how might we estimate the system, or,
equivalently, estimate the parameter vector 0?



Linear, Time-Invariant System Identification

* Given input and output data, how might we estimate the system, or,
equivalently, estimate the parameter vector 6?

* One approach: choose 0 that leads to the smallest (in some sense) one-step
prediction error

A B D(q)A(q) D(q)B(q)
fnin —1,6] = [1 - Cg) ] It G "
—argmme n| —ynn —1,0))

e.g., f = x? (minimization in the least
squares sense)



Nonlinear, Time-Varying Systems

» Systems often exhibit nonlinear behavior, and may change over time.

ylnjn —1,0] = g(¢[n],0)
/

fixed window of past input and output data

* The general approach is the same as the LTI case, but the functional
form of the one-step prediction error is more general.

= argmmz f(y ylnln — 1, 0])



Nonlinear, Time-Varying Systems

e Common approach: expand the mapping using a basis

9(¢.0) = > apgr(e.p)

T
0=lar ag ... ay P1 P2 ... Dl
* Examples:

* Wavelet expansions (g, are then dilated and scaled versions of a “mother”
basis function)

* Sigmoid, tanh, Gaussian functions



Nonlinear, Time-Varying Systems

* Layered/composed expansions are neural networks.

=2 om0, A7 ") & = 9x(®)
Za ’ l ’ (3)) (3)_g (¢(2))

g (@) =3 aM (o™, g 4 M) pM = g (M)
l



Nonlinear, Time-Varying Systems

* Layered/composed expansions are neural networks.
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Nonlinear, Time-Varying Systems

* Time-varying systems can be described using recurrent networks.

b1
P2

N

i\ (9)
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Learning Theory Caveats and Open Directions

* With nonlinear systems, cost function minimization presents
special challenges.

* Nonlinear cost functions are usually non-convex, and have many local
minima.

* Solutions for 6 that have the lowest minimization error do not
necesisarlly perform well on new data (poor generalization
error).

* Understanding the behavior of generalization error in different
situations is currently a very active topic of research in machine
learning and data science.

e VValidation data sets are critical
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