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Observation Model Decision Rule

els there an MSTID in my data?
e|s there a relationship between atmospheric tides and electric fields?
*Did an earthquake cause an ionospheric effect?

*What is the plasma velocity?

*What percentage of ionospheric variability can be attributed to the
neutral atmosphere?
*What is a meteor's mass, based on its plasma trail?

eAccuracy vs Precision
eCorrelation vs Causation
*Monte Carlo simulation
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Binary Hypothesis testing

* Example: detect incoming missile using measured radar

return @ ,
&y —— P S sy ——s

° KnOW: L Observation Model Decision Rule
* Probability Density Function (PDF) of HO: no missile (i.e., just noise)

* PDF of H1: missile incoming

* Neyman-Pearson lemma: Use Likelihood Ratio Test!
e Even for large data sets

Ho H
Measurement: y

.. D1(v)
! po(y)

(PDF)

> 7, decide H;

Probability Density Function

else decide H

0 T K Y
Measured radar power
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Binary Hypothesis testing
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Observation Model Decision Rule

* Because the decision is based on random data, it is also random
» Evaluate probability of detection, false alarm, etc.

Measurement: y

p1(y)
po(y)

(PDF)

> 7, decide H;

Probability Density Function

else decide Hj

Measured radar power




Binary Hypothesis testing

Measurement: y

Maximum Choose the hypothesis that has a =1
.. P11y . Likelihood (ML) larger PDF aty
if ) > 1, decide H; _ _
Do (y) Maximum a Incorporate prior knowledge 7= p(Hy)/p(Hy)
) Posteriori (MAP)
else decide HO Neyman- Useful if you don’t know p1(y) Choose Psise alarm
Pearson (NP) and solve for t

* Receiver Operating Characteristic (ROC)
curve

 ROC characterizes all thresholds

Pp(Oxp)

PDF

Measured radar power




Connection with statistical tests

* Most (all?) statistical tests can be understood in this framework
* t-test
* Wilcoxon
« ANOVA

* P-value is the probability of false alarm
* i.e., of deciding an effect is real when it is not actually real
* “statistically significant at the p=0.05 level”
* NOT “95% significant”

A
* NOT “a large effect”
* NOT “95% chance of H1 being correct” £
©
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Estimation theory
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Observation Model Decision Rule

* Estimate velocity using Maximum Likelihood (ML) Estimation

* Under Gaussian, uncorrelated noise, ML is Least Squares!

* If that’s not true, Least Squares may not be the best choice for
parameter estimation
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m = velocity
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Estimation theory (n-dimensional model)
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Observation Model Decision Rule

* Example: Radio occultation b

* Generally: Fredholm integral ™ Z/g(x’ §)m(S)ds

* ML or Least-squares requires us to restrict solution space

* Often done implicitly by limiting degrees of freedom in m*

. F|t Chapman proﬁle 400 ___ Vertical Basis Functions
* Fit spherical harmonics ol [Drob et al., 2015]
* Assume equilibrium conditions

* No ability to track error of
these assumptions
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Figure 1. Vertical cubic B-spline basis functions f; (red, blue) and corresponding data intervals §; (dashed) for the new
HWM model. The last two basis functions (red) are constructed to approach either 0 or 1, subject to continuity and
derivative constraints with the remaining functions.



Estimation theory (n-dimensional data)

Mirye d —>m*
—_—] d= G(mtrue) + n > S(d)

Observation Model Decision Rule

e Don’t restrict solution space — write PDF and see where it takes you
b

d(x)=/g(x, §)m(&)ds

a

* Fredholm integrals

Gm=d

* Tempting to take inverse (or least-squares), but only valid if:
e Gis full rank
e # data points = # unknowns
* Errors are Gaussian and uncorrelated

* Even if these are satisfied, result might be too noisy, or physically
unrealistic.

 Solution: incorporate prior information



likelihood

V4 .
rior
Bayes’ Theorem Sosterior PDF prio
PDF \ /
e Data updates a prior probability/belief \
P PrieT P i F(d]m)p(m)
« Maximum a posteriori (MAP) q(m|d) = )
estimation
* Example: Gaussian prior with mean my,
and stddev a
* Takes form of “cost function” to be 8 0.50
minimized §
L‘E 0.25 \
2 2 2 9) o
min (1/0)7(Gm —d)[|5 + (1/a)7[[m —myioell5, % o
0 5 10

Velocity (m)

* Equal to ML if prior is constant (i.e., uninformative)

* Prior may seem as arbitrary as fitting pre-determined functions, but:

* Priors can be learned
* Priors allow characterization of errors



Altitude [km]

Regularization

* This “cost function” approach is often useful even when no prior is
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Don’t just invert your observation equation,

or blindly use least squares!
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Error propagation

Mtrye d m*
—_— d= G(mtrue) +n > 6(d) >
Observation Model Decision Rule \ bias
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* The estimate is also a random variable, with mean and variance (or

covariance matrix)
* Even if raw data are uncorrelated, the resulting estimate is often correlated




Bias-Variance Tradeoff

Without Regularization

With Regularization
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Observation Model Decision Rule

els there an MSTID in my data?
e|s there a relationship between atmospheric tides and electric fields?
*Did an earthquake cause an ionospheric effect?

eData Assimiliation

eAccuracy vs Precision
eCorrelation vs Causation
*Monte Carlo simulation



Statistical Estimation: Dynamic Model

General State-Space Signal Model

The general hidden Markov model (HMM):

Initial prior: Da, (1) (1)
Measurement /forward model: hi(y;|x;) (2)
State-transition model: fi(@ii1]x;) (3)

dim(x;) =N dim(y,) =M

Goal: Compute minimum mean square error (MMSE) estimates of the
unknown state x; given the measurements y.. = {y,, ..., y,}.

By 2 Elzilyy,] = / % p(lys.;) de; (4)

17



Statistical Estimation: Dynamic Model

Linear Additive-Noise State-Space Signal
Model (Linear Gaussian Model)

Initial prior:  Elx,] = u,, Cov(x,) = II;
Measurement /forward model: y,=H,x;, + v,

State-transition model: T, =F,x; + u;

e The first and second order statistics of the zero mean state (u;) and
measurement (v;) noise are given: Cov(u;) = Q, and Cov(v;) =
R;.

Goal: Compute linear minimum mean square error (LMMSE) estimates
of the unknown state x; given the measurements y,.,.

- Kalman filter

—~~ ~
~N O Ol
~— — —

18
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* Important to understand what error bars L 0.2 s
mean o
* Bias (e.g., calibration error) 0.0
e Variance (e.g., noise) 0 5 4/Mrue g 8 10
* Data providers rarely report 15t moment Estimate (m*)

e Critical for assimilation and data fusion

68% of Values are within 1 STD
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Bias and Resolution

* Geophysical data often have a bias towards “smoothness”

e Can quantify with resolution matrix:

it d =Gm
and m* = GPd
then R = G

21 Mar 2013 P ) 033600 UT

>

(N —

&8 =
~ —
=)

'\' 0 _f':;» =
[J. Gjerloev, CEDAR Prize Lecture 2016]



Correlation vs Causation

= Field-aligned B

. . ) currents 7+
* All machine learning techniques are
fueled by correlation \ ¥ "N
L. . “ Pedersen / / :
* Coincidental correlation currents [ |
* Multiple comparisons e 1N ' 7 B cedersen
e p=0.05 = 1in 20 studies are wrong bl = cufrents

* Bidirectional causation
* Predator-prey
* Magnetosphere-ionosphere coupling

Auroral
precipitation

©The COMET Program

Age of Miss America
correlates with

Murders by steam, hot vapours and hot objects
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Correlation vs Causation

* Hidden variable
* Milton Friedman’s thermostat
* How | wasted 6 months in grad school

* Controlled studies are usually the answer, but
CEDAR science is largely observational.

 Use first-principles modeling

hidden
myopic variable 6
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Causation doesn’t imply correlation either
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Observation Model Decision Rule

Think of all variables as random

2. Don’t just invert your observation equation
Decision and estimation theory might be able to help

3. First-order (systematic) errors are just as important as
Ta kea WayS second-order (statistical) errors, especially in geoscience

All error bars are not created equal

4. Correlation can be misleading

T VSED 0 THINK, THEN I TOOK A | | SOUNDS LKE THE
CORRELATION IMPUED STATISTICS CLASS. CLASS HELPED.
CAVSATION. Now I DON'T. WELL, MAYBE

03 15919




Sources

* https://doi.org/10.1002/scin.5591770721

e Statistical Inference for Engineers and Data Scientists, Moulin and
Veeravali

e https://ccmc.gsfc.nasa.gov/models/exo.php

 Aster, R., Borchers, B., & Thurber, C. H. (2013). Parameter Estimation
and Inverse Problems.

* https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
* Maximum entropy: doi: 10.1029/96RS02334



https://doi.org/10.1002/scin.5591770721
https://ccmc.gsfc.nasa.gov/models/exo.php
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
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Probability Density Functions (PDFs)

Drop 10 coins and count the heads 1.0000 TN e
Distribution from Sample of 4 Trials : \ :::g ]
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prob(a < z < b)

Properties of PDFs

_

* Integratesto 1

* The probability of any outcome is an integral over the appropriate
range

* Maximum > mode, most likely value
* First moment (center of gravity) 2 mean, expected value

» Second moment = standard deviation, variability

68% of Values are within 1 STD

=

I fx)dx = 68.3%

Probability Density




Why are Gaussians used?

Particle
velocities

e Central Limit Theorem ina gas
* Maximum entropy for given mean & stddev
* Because it makes the math easy

Poisson
counting
noise in
large limit

Voltage
across a
resistor

flalmo)=——7e o

“Plinko” Game Random Walk




Multivariate PDFs

* Generalize to multi-dimensional data

* Covariance matrix is important — geophysical data often have
correlated errors
* Not often reported

* Diagonal covariance matrix often assumed — this lets you write PDF as
product of individual PDFs

1 “Lxen) s (x—
f(xl,...,xk)Zf(X)z e Hx—n) =7 (x—n)

K12 1l/2
(27)" 2]
where
X H 0, Op Oy
Xy H, O, Oy O
X = ll' = . 2 = .
| X | A | O Oy " Ok |

the variables X, X, ..., X, are called mutually independent if

f(xeox)=fi(x) fo (%) fi (%)




Multivariate PDFs

* If Gaussian, mean and covariance matrix are all you need to know

* If not, it’s complicated
* Uncorrelated vs independent

1 ) 5 (e
f(xl,...,xk)=f(x)= . o (W) = (xm)

where
1 0.8 0.4 0 0.4
X H, 0,1 Op Ok / ¥ gﬁ ¢ £ S
X, M, O, Oy O
X= n= . Y= . 1 1 1 1
/ L e — —
[ X | M | O Oy O |
0




