Impact: When Particles and Satellites Collide

Sigrid Close

CEDAR 2016

Space Environment

http://www.cea.inpe.br/wiser/about.html

Hypervelocity Particles

- Meteoroids
 - Speeds
 - 11 to 72.8 km/s (interplanetary)
 - 30-60 km/s (average)
 - Densities
 - ≤1 g/cm³ (icy) or
 > 1 g/cm³ (rocky/stony)
 - Sizes
 - < 0.3 m (meteoroid)
 - < 62 µm (dust)

- Space Debris
 - Speeds in Low Earth Orbit
 - < 12 km/s
 - 7-10 km/s (average)
 - Densities
 - > 2 g/cm³
 - Sizes
 - < 10 cm (small)

Probability of Impact? Effects from Impact?

Sources

Characterization

Meteoroids

- Showers
 - Specific parent body
 - Named for radiant

- Sporadics
 - Quasi-continuous
 - Grouped by location

Space Debris

Liou et al., 2013

Flux

~ 1 ng-sized particle will impact 1 m² spacecraft once per day

Mariner 4 – 1967

http://science.nasa.gov/science-news/science-at-nasa/2006/23aug_mariner4/

• September: 17 meteoroid impacts in 15 minutes

- Temperature drop
- Attitude changed

• December: 83 meteoroid impacts over the course of 1 day

- Attitude perturbations
- Degradation of signal strength

Spacecraft Anomalies

ESA

Electron Caused EM Pulse (Deep Dielectric Charging) - 490

Electrostatic Discharge (Surface Charging) – 1072

Single Event Upset - 822

Radio Frequency Interference – 8

Unknown - 2587

Goel et al., 2006

Space Environment and Hypervelocity Impact Plasma

- Mechanical damage: "well-known", larger (> 120 microns), rare
- Electrical damage: "unknown", smaller, more numerous
 - ElectroStatic Discharge (ESD)
 - ElectroMagnetic Pulse (EMP)

NRC Report

Limiting Future Collision Risk to Spacecraft

Released September 2011

- "Recommendation: The NASA meteoroid and orbital debris programs should establish a baseline effort to evaluate major uncertainties in the Meteoroid Environment Model regarding the meteoroid environment in the following areas:
 - (1) meteoroid velocity distributions as a function of mass;
 - (2) flux of meteoroids of larger sizes (>100 microns);
 - (3) effects of plasma during impacts, including impacts of very small but high-velocity particles; and
 - (4) variations in meteoroid bulk density with impact velocity."

Spacecraft Threat Characterization

- Particle impacts in atmosphere: characterize particles
- Particles impacts on spacecraft: characterize effects

Outline

- Introduction
- Impacts in Atmosphere
- Impacts on Spacecraft
- Conclusion

Meteoroids and Meteors

Ground-Based Radar Data

- High-power large-aperture (HPLA) meteor observations
 - ALTAIR
 - Arecibo Observatory
 - MIT Haystack
 - EISCAT

ARPA Long-range Tracking and Instrumentation Radar (ALTAIR)

- High sensitivity, well-calibrated
- Dual frequency
- Interferometric capabilities
- High range resolution
- Circularly polarized

Frequency	160 MHz	422 MHz
Antenna Diameter	46 m	46 m
Beamwidth	2.8°	1.1°
Peak Power	6.0 MW	6.4 MW
Xmit. Polarization	RC	RC
Rec. Polarization	LC, RC	LC, RC
Range Resolution	30 m	7 m
Sensitivity	64 dB	81 dB
IPP	.003 sec	.003 sec

(*Single pulse S/N for 1 square meter target at 100 km range)

ALTAIR Radar Data

• Correlate radar signal strength (R) with meteor plasma density

Meteoroid Mass, Radius and Density

• Mass from scattering model

$$m = \int \frac{q\mu v}{\beta} dt$$

• Ballistic parameter from deceleration

$$\frac{m}{\pi r^2} = -\frac{(v\gamma\rho\sec\chi)}{dv/dh}$$

• Density from spherical distribution

$$\delta = \frac{3m}{4\pi r^3}$$

q	Electron line density (m ⁻¹)
μ	Meteoroid molecular mass (gm)
v	Head echo velocity (m/s)
β	Ionization probability
r	Meteoroid radius (m)
γ	Dimensionless drag coefficient
ρ	Air density (gm/m ³)
χ	Angle between path and zenith
h	Head echo altitude (m)
δ	Meteoroid density (g/m ³)

Methodology

- Introduction
- Impacts in Atmosphere
- Impacts on Spacecraft
 - Theory
 - Space Experiments
 - Ground Experiments
- Conclusion

Plasma Generation

Charge Production

STANFORD Characteristic Plasma Parameters

Density:

$$(t) = \frac{n_{e,o}}{\left(1 + \frac{c_s t}{r_o}\right)^3}$$

 n_{e}

Dynamics:
$$\ddot{\xi}(t) = -\frac{e^2 n_e \xi(t)}{m_e \varepsilon_o} = -\frac{\omega_{p,o}^2 \xi(t)}{\left(1 + \frac{c_s t}{r_o}\right)^3}$$

$$\xi(t) = -\frac{v_{th,e}}{\omega_{p,0}} \left(1 + \frac{c_s t}{r_o}\right)^{3/4} \sin\left(\omega_{p,0} \frac{r_o}{c_s} \left[1 + \frac{c_s t}{r_o}\right]^{-1/2}\right)$$

RF Emission: EMP from Theory

$$P = \frac{\omega_{p,o}^{4} \left(\frac{v_{th,e}}{\omega_{p,o}}\right)^{2} e^{2} N \sin^{2} \left(\omega_{p,o} \frac{r_{0}}{c_{s}} \left[1 + \frac{2c_{s}t}{r_{0}}\right]^{-\frac{1}{2}}\right)}{6\pi e_{0} c^{3} \left(1 + \frac{c_{s}t}{r_{0}}\right)^{\frac{9}{2}}}$$

Close *et al.*, 2010

Low Earth Orbit Dust Detectors

 $v^{0.666}$

- Long Duration Exposure Facility (LDEF)
- **Mission: effects of space environment on satellites**
 - Meteoroids and debris: $\frac{D_c}{D_p} = C\left(\frac{\delta_p}{\delta_r}\right)$
- Lifespan
 - Sent into LEO by Challenger in 1984
 - Returned by Columbia in 1990

Interplanetary Dust Detectors

Spacecraft	Mass threshold (kg)	Dynamic range	Sensitive area (m ²)	Reference
Pioneer 8/9	2×10^{-16}	10 ²	0.010	Berg and Richardson (1968)
Pioneer 10	2×10^{-12}	_	0.26	Humes et al. (1974)
Pioneer 11	1×10^{-11}	—	0.26 (0.57)	Humes (1980)
HEOS 2	2×10^{-19}	10 ⁴	0.010	Hoffmann et al. (1975)
Helios 1 and 2	9×10^{-18}	10 ⁴	0.012	Dietzel et al. (1973)
Ulysses	2×10^{-18}	10 ⁶	0.10	Grün et al. (1983)
Galileo	2×10^{-18}	10 ⁶	0.10	Grün et al. (1992)
Cassini	5×10^{-19}	10 ⁶	0.10	This work

The mass thresholds refer to 20 km/s impact speed. The Pioneer 10 and 11 detectors are threshold detectors. Srama et al., 2002

"Surprisingly, the plasma wave experiment on board the Voyager 2 spacecraft picked up charge signals from expanding plasma clouds generated by dust impacts onto the spacecraft during its passage through Saturn's ring plane" Gurnett *et al.*, 1983

Ground-Based Facilities

- *Advantage*: controlled experiment and knowledge of impactor
- Disadvantage: can't fully reproduce particle parameters

Ground Based Testing

Max Planck Institute (MPI)

Colorado Center for Lunar Dust Acceleration Studies (CCLDAS)

NASA Ames Vertical Gun Range (AVGR)

Chamber

- 1.4 m diameter
- 10⁻⁶ to 10⁻⁵ mbar

Sensors

Goel et al., 2015

- All-optical Photomultiplier Tube (PMT), spectral PMT with filters, photodiode with lens
- Plasma: Retarding Potential Analyzers (RPAs), 16 channel Transient Plasma Analyzer (TPA), 8 channel TPA
- RF: 165 MHz, 315 MHz, 916 MHz patch antennas

Targets

Donated by J. Likar of Lockheed Martin

- E-field target/sensors developed by SRI
- Electrical bias applied to targets to simulate spacecraft charging

Positive bias on target

<u>Negative</u> bias on target

<u>Neutral</u> bias on target

Multi-Sensor Data

Close et al., 2013

Sample Plasma Data

RPA Data: Dependence on Bias

STANFORD ASTRONAUTICS RPA Data: Dependence on Target Type

Target	Negative lons
Solar Panel	No
Solar Cell (uncoated)	Yes
Solar Cell (conductive)	No
OSR (standard)	Two species
OSR (conductive)	Yes

Sample RF Data

RF Data: Dependence on Frequency

STANFORD RF Data: Dependence on Speed

Threat to Spacecraft Electronics

Quantity	Ground Based Tests (1.4 fg, 40 km/s)	Impact in Space (1 ng, 60 km/s)	Impact in Space (1 µg, 60 km/s)			
Electric field (V/m)	3.2 x 10 ⁻³	2.0 x 10 ⁵	3.0 x 10 ⁷			
Peak power (W)	7.5 x 10 ⁻⁷	2.7	2.7 x 10 ³			
Total kinetic energy of incoming particle (J)	1.1 x 10 ⁻⁹	1.8 x 10 ⁻³	1.8			
Energy (J)	3.8 x 10 ⁻¹⁴	1.4 x 10 ⁻⁷	1.4 x 10 ⁻⁴			
100 100 100 100 100 100 100 100						
	Impactor mass:	→ 1 ng → 1 μg				

- Introduction
- Impacts in Atmosphere
- Impacts on Spacecraft
- Conclusion

- Hypervelocity impact physics still poorly understood
- Remote sensing of plasma provides characterization of particle
- Data from spacecraft impacts (both space and ground) provides characterization of electrical effects
 - Multi-sensor approach: optical, plasma, RF
 - Strong dependence on speed, target type, biasing conditions
 - RF associated with expanding plasma
- Implications for spacecraft failure still largely unknown

Thank You!

BACKUP

Space Experiments

ISS Hypervelocity Impact Instrument Module

RF Characteristics: Dependence on Speed

Optical Data

Optical Emission Model

PMT: Negatively Biased Target

- Spacecraft are routinely impacted by hypervelocity particles with possibility of damage
 - Mechanical: "well-known", larger, rare
 - Electrical: "unknown", smaller, more numerous
 - Electrostatic Discharge (ESD)
 - Electromagnetic Pulse (EMP)
- <u>Goal</u>: characterize plasma and potential radio frequency (RF) emission from hypervelocity impacts to assess possibility of spacecraft damage

Results of Hypervelocity Impact

Effects from Hypervelocity Impact

Possible Failures ?

