How can we investigate global Magnetosphere-lonosphere coupling?

J. Gjerloev, S. Ohtani, R. Barnes, C. Waters, T. Motoba, C. Olson

JOHNS HOPKINS APPLIED PHYSICS LABORATORY

vil Spa

How can we investigate global Magnetosphere-lonosphere coupling?

J. Gjerloev, S. Ohtani, R. Barnes, C. Waters, T. Motoba, C. Olson

JOHNS HOPKINS APPLIED PHYSICS LABORATORY

ivil Spa

AMPERE

- 1. How do we derive global solutions from sparse data coverage?
- 2. What are the limitations of the global solutions? Derived parameters Processes/phenomena
- 3. The holy grail of M-I physics: Global, continuous and complete electrodynamic solutions.

- 1. How do we derive global solutions from sparse data coverage?
- 2. What are the limitations of the global solutions? Derived parameters Processes/phenomena
- 3. The holy grail of M-I physics: Global, continuous and complete electrodynamic solutions.

Deriving global solutions: What is the problem?

Challenges:

- Spatial coverage
- Temporal resolution

Deriving global solutions: What is the problem?

Deriving global solutions: Three approaches

Approach 1: No assumedknowledge of system behavior:1) Simple spatial interpolation

Approach 2: Assuming knowledge of the system behavior

- 2) External driver
- 3) State descriptors

Approach 1: No assumed knowledge of system behavior Simple Spatial Interpolation

Approach 1: No assumedknowledge of system behavior:1) Simple spatial interpolation

Question: Are the scale sizes of the features larger than the spatial data gaps?

Answer: No/yes/maybe.

Depend on:

- science objective
- parameter

Approach 2: Assuming knowledge of the system behavior External Drivers

Pettigrew et al. (2010)

Approach 2: Assuming knowledge of the system behavior External Drivers

Waters, Gjerloev, Dupont, Barnes, JGR, 2015

Inherent complexities

- Can a scalar describe a 2D or 3D system?
- What does the index even mean?
- Does it have appropriate temporal resolution?
- Does it have appropriate spatial resolution?

Rostoker [1972] concluded that in order to avoid the obvious pitfalls for the AE index it should be used only in statistical studies rather than individual events.

21 Mar 2013 03:36:00 UT

Gkioulidou et al., GRL, 2015

 $\bar{B}_{measured}(\bar{r},t) = \bar{B}_{main}(\bar{r}) + \bar{B}_{noise}(t)$

 $+ \bar{B}_{Sq}(\bar{r},t) + \bar{B}_{EEJ}(\bar{r},t) + \bar{B}_{RC}(\bar{r},t) + \bar{B}_{CT}(\bar{r},t) + \bar{B}_{MP}(\bar{r},t) + \bar{B}_{AEJ}(\bar{r},t) + \bar{B}_{GI}(\bar{r},t) + \bar{B}_{FAC}(\bar{r},t) \dots$

Deriving global distributions: What have we learned?

Conclusions:

- Simple spatial interpolation:
 - assume scale sizes are larger than spatial data gaps
- External driver:
 - assume causality
- State descriptors:
 - assume these adequately describe the system state
- It is unclear to what extend pretty smooth distributions provide insight into system behavior.

Recommendations:

- More emphasis should be put on validation of results/models.
- We must remember which underlying physical processes are excluded/ignored by the large-scale solutions.
- New models should include/acknowledge the dynamics of the system.
- Models should increasingly allow the user to control settings.

- 1. How do we derive global solutions from sparse data coverage?
- 2. What are the limitations of the global solutions? Derived parameters Processes/phenomena
- 3. The holy grail of M-I physics: Global, continuous and complete electrodynamic solutions.

Global Birkeland Current Distribution: Inherent Assumptions

Inherent assumption:

Currents with scale sizes smaller than the R1-R2 currents are insignificant;

Global Birkeland Current Distribution: Inherent Assumptions

Inherent assumption:

Currents with scale sizes smaller than the R1-R2 currents are insignificant;

Global Birkeland Current Distribution: Inherent Assumptions

Inherent assumption:

- Currents with scale sizes smaller than the R1-R2 currents are insignificant;
- The observed magnetic field perturbations are due to static currents.

Observational Challenge: Mixing Space and Time

ST 5 Mission: Multi point measurements enabling separation of space and time

Space Technology 5

Slavin et al., 2008

Observations appear to indicate:

- The FAC density is highly structured;
- The FAC density changes significantly over the 1-6 min separation of the ST 5 satellites.

Typical Events: ∆t~15 sec

Current filaments with scale sizes larger than ~50 km change on time scales longer than ~15 sec.

Gjerloev et al. [2011]

Typical Events: Δt~60 sec

Current filaments with scale sizes larger than ~200 km change on time scales longer than ~60 sec.

Gjerloev et al. [2011]

Typical Events: Δt~600 sec

On time scales of ~600 sec we find significant changes to the entire FAC system at all scale sizes.

Gjerloev et al. [2011]

Scale Size and Variability of Birkeland Currents Anticipated result

Scale Size and Variability of Birkeland Currents Actual result

A satellite pass is marginally in the high correlation region on the dayside.

A sounding rocket is typically in the poor correlation region.

Scale Size and Variability of Green Light Emissions

Humberset et al. [2016]

Calculating FAC's using Swarm

Single satellite (classical)

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} \quad \Rightarrow \quad J_Z = \left[\frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y} \right] / \mu_0$$

 $T_0 + \Delta T$

 T_{o}

۲₀

 T_0

Assumptions:

- Static over the time it takes to traverse current sheet
- Simplistic current configuration (e.g. infinite sheet)

Three satellites (curlometer technique)

$$j = \frac{1}{\mu_0 A} \oint B \cdot d\ell \quad \Rightarrow \quad J_z \approx \frac{1}{\mu_0} \left(\frac{\mathbf{r}_{13} \cdot \Delta \mathbf{B}_{12} - \mathbf{r}_{12} \cdot \Delta \mathbf{B}_{13}}{|\mathbf{r}_{13} \times \mathbf{r}_{12}|} \right)$$

Assumption:

Constant current over area

Calculating Birkeland Currents using ESA Swarm Example on 1 September 2014

Special thanks to Tetsuo Motoba(STEL, Nagoya U) and Natl. Inst. Polar Res. (Japan)

Calculating Birkeland Currents using ESA Swarm Example on 1 September 2014

Sat. Lat [deg]

Conveners:

Aoi Nakamizo,¹ Natalia Ganushkina,² Hermann J. Opgenoorth,³ and Lawrence J. Zanetti,^{4,5}

1: NICT (Japan); 2: FMI (Finland)/Univ. Michigan (USA); 3: IRF (Sweden); 4: NOAA (USA); 5: JHU/APL (USA)

- 1. How do we derive global solutions from sparse data coverage?
- 2. What are the limitations of the global solutions? Derived parameters Processes/phenomena
- 3. The holy grail of M-I physics: Global, continuous and complete electrodynamic solutions.

North-South Structures

North-South Structures

Limitations of statistical models

Cousins, E. D. P. and S. G. Shepherd (2010)

To what extend does pretty smooth average solutions provide the system information we seek?

Limitations of statistical models

Waters, Gjerloev, Dupont, Barnes, JGR, 2015

Special Session at the 2016 Fall AGU Meeting (San Francisco; 12-16 December 2016; Abstract Submission : 15 June - 3 August 2016

Limitations of global distributions: What have we learned?

Conclusions:

- Derived quantities from measurements is based on assumptions that often are violated.
- SuperMAG-SuperDARN-AMPERE spatiotemporal resolution limit the processes and phenomena that can be addressed.

Recommendations:

- Users should keep assumptions and limitations in mind before making conclusions. Providers should be open about these complexities and provide quality flags (when possible).
- Relationship between large-scale and meso-scale processes should be emphasized (e.g. feeding and drainage of the auroral electrojet system).

- 1. How do we derive global solutions from sparse data coverage?
- 2. What are the limitations of global solutions? Derived parameters Processes/phenomena
- 3. The holy grail of M-I physics: Global, continuous and complete electrodynamic solutions.

AMPERE-SuperMAG

AMPERE-SuperMAG substorm.

- Non-storm conditions.

Special thanks to Cameron Olson (JHU/APL, Augsburg College)

AMPERE-SuperMAG

AMPERE-SuperMAG substorm.

- Storm conditions.

Special thanks to Cameron Olson (JHU/APL, Augsburg College)

Magnetosphere-Ionosphere-Atmosphere-Coupling Project (MIAC)

Challenges:

Difference in temporal resolution of datasets Non uniform spatial coverage Measurement uncertainties and errors Technique of deriving parameters from measurements

Magnetosphere-Ionosphere-Atmosphere-Coupling Project (MIAC)

Global, continuous and complete solutions: What have we learned?

- **Conclusions:**
- SuperMAG-SuperDARN-AMPERE allow complete-continuous-global first-principle solutions but:
 - measurements have inherent limitations
 - parameters derived from measurements use fundamental assumptions
 - difference in temporal resolution
 - difference in spatial coverage

The solutions will not (generally) allow studies of small to meso-scale processes.

Recommendations:

Comprehensive objective validation of solutions is essential.

- 1. How do we derive global solutions from sparse data coverage?
- 2. What are the limitations of the global solutions? Derived parameters Processes/phenomena
- 3. The holy grail of M-I physics: Global, continuous and complete electrodynamic solutions.
- 4. Bonus slide. 😳

Drawing Conclusions From Local/Sparse Observations

Calculating Birkeland Currents using ESA Swarm Example on 3 May 2014

Special thanks to Tetsuo Motoba(STEL, Nagoya U) and Natl. Inst. Polar Res. (Japan)

Calculating Birkeland Currents using ESA Swarm Example on 3 May 2014

SWARM-C(MLT: 22:20)

Curlometer and single-SC results differs because FACs are structured along the SWARM orbit.

