CEDAR-2012

Mesoscale Ionospheric Sensing Using Modern Radio Interferometers

Dr. Kenneth F. Dymond Space Science Division Naval Research Laboratory Washington, DC

Overview

- Several next-generation astronomical radio interferometers are either operating or under construction
 - Two northern hemisphere (EVLA/LWA, New Mexico, USA; LOFAR, Northern Europe primarily Netherlands)
 - Two proposed in the southern hemisphere (SKA, South Africa or Australia; MWA Australia)
 - Two equatorial (GMRT, India; ALMA, Chile)
- Ionospheric effects including refraction, diffraction, scintillation, and Faraday rotation can affect astrophysical measurement quality
 - Better ionospheric correction methods are needed to improve astrophysical imaging
 - However, the astrophysical observations can be exploited to better understand mesoscale ionospheric effects
- Modern radio interferometers present new opportunities for ionospheric science

Ionospheric Effects on LF Astronomical Imaging

- Ionospheric effects are very important
 - Correction is required to meet imaging goals
 - Ionospheric specification/measurement is a byproduct of ionospheric correction/calibration

9 sources showing refractive wander

How Do Interferometers Work?

- Interferometers measure the quasimonochromatic fringe visibility V
- V is the interferogram of sources visible within the beam of the interferometer
- The Visibilities and the Brightness
 (B) are a Fourier transform pair
- The Brightness is seen to be only a function of the baseline distance between the antennas
- The slow rotation of the Earth causes the dot product to vary with time effectively scaling the baseline distance
- This improves the coverage in the spatial frequency domain and improves the retrieved image quality

$$V_{\nu} \vec{r}_{1}, \vec{r}_{2} = \int B_{\nu}(\hat{s}) \exp -2\pi i \hat{s} \cdot (\vec{r}_{2} - \vec{r}_{1}) / \lambda \ d\Omega$$
$$B_{\nu}(\hat{s}) = \int V_{\nu} \vec{r}_{1}, \vec{r}_{2} \exp 2\pi i \hat{s} \cdot (\vec{r}_{2} - \vec{r}_{1}) / \lambda \ d\Omega'$$

Measurement Imperfections (1 of 2)

- But the interferometers are imperfect and instrumental and other artifacts creep into the measurements
 - Geometric and antenna delays
 - Point spread function of antennas
 - Assumption that celestial sphere does not affect transmission of radio waves – ionospheric distortions violate this assumption

Measurement Imperfections (2 of 2)

These imperfections affect the measurement equation

$$V_{v}^{M} \ \vec{r}_{1}, \vec{r}_{2} = \int B_{v}(\hat{s}) g_{1}g_{2}^{*} \exp (-2\pi i \hat{s} \cdot (\vec{r}_{2} - \vec{r}_{1})/\lambda \ d\Omega$$

> The antenna gain terms (g_1) are given by:

 $g_{1} = P_{v} \hat{s} \exp(i(\phi_{Amb} + \phi_{Iono} + \phi_{Geom} + \phi_{Ant}))$

- P_s is the antenna point spread function
- $\phi_{Amb} = 2\pi$ ambiguities
- $\phi_{lono} = ionospherically induced phase delay$
- ϕ_{Geom} = geometrically induced phase term (Earth's rotation)
- ϕ_{Ant} = phase delay induced by antenna electronics
- > The ionospheric terms are what we are interested in
- > The Visibilities are affected by the phase differences:
 - $\Delta \phi = (-8.48 / v_{GHz}) \Delta T_{TECU} \sim 0.0015 \ TECU \ deg^{-1} \ (at \ 74 \ MHz)$

Ionospheric Distortion Scenarios

In scenario 3, the correction is done in image space after the Visibilities are Fourier transformed. A phase screen is fit to minimize image distortions and applied to the Visibilities which are transformed a ground time. This is In scenario 4, it is likely that a hybrid approach will be adopted.

(a) (b) In scenarios 1 & 2, the ionospheric term can be estimated in the spatial frequency space and removed before Fourier transforming. This is known as Self Calibration. Beam Field of View V Regime 3 Regime 4 V>> S A << S V>> S A >> S Array Aperture A Array Aperture A (3)(4)

(d)

(C)

Where Do We Go From Here?

- Self Calibration: works for narrow fields of view and bright sources
- Field Calibration: works well for wider fields of view and for cases when the ionospheric coverage exceeds the array size
- Hybrid Calibration: a combination of self calibration and field calibration
 - Peeling: Self calibrate on bright sources and then apply field calibration to remove the remaining distortion
- Can we use ionospheric knowledge to produce a better approach?
 - Data assimilation: Assimilate heterogeneous ionospheric measurements to create global/regional ionospheric specification
 - Phenomenological approach: identify ionospheric phenomena present in data and tailor correction
- What phenomena are observable?

CRICKET Concept

COSMIC-GOX: Electron Density Profiles

VLA Measurements

The phases divided by the baseline length are shown

- West & North
 - Phase/TEC gradients approximately proportional to the baseline length implying structures larger than the array dimensions
 - Phase structures along each arm are very similar
 - Phase progression indicating roughly North-to-South motion
- East arm baseline scaling not as clear
- Taken together this indicates a large-scale wave traveling approximately perpendicular to the East arm (moving South-Southwest)

6/28/2012

CRICKET Derived TID Parameters

Period (min.)	Amplitude (TECU)	λ(km)	Azimuth (degrees)	Speed (m/s)	Projected λ(km)
95.33	0.010 s are fairly ty	91.2 pical for ch	186 aracteristics	16 of MSTIDs	100.7
 US Speeds typically ~100-200 m/s Wavelengths typically 100-200 km Periods 10-100 min. Direction of propagation typically southwesterly – but not always 					
13.62	0.065	78.7	223	96	165.3
11.92	0.141	178.6	121	250	233.4
10.59	0.137	196.1	159	309	196.2

TIP Measurements

- TIP measures the UV radiance at 135.6 nm
 - $O^+ + e \rightarrow O + hv (135.6 \text{ nm})$

TIP Measurements

Three wavelengths seen in TIP data consistent with VLA measurements.

Where did it/they come from?

- Some MSTIDs are thought to originate from turbulence near jet streams
- The jet stream over the central US was changing dramatically on Sept 15, 2007
- > This is a possible explanation for their origin

15 Sept, 6 UT

Simultaneous Radio and Optical Observations (Campaign 1)

- Date: August 2003 (AC677)
- > Objective

Identify nighttime ionospheric structures affecting 74 MHz VLA

- Three 8-hr data epochs at 74 MHz
- Nighttime optical measurements
 - 630.0 nm F-region (N_e & height)
 - 777.4 nm F-region (N_e^2)
 - 557.7 nm Mesosphere
 - Oxygen Hydroxyl (broadband) Mesosphere

Mesospheric Waves

- Complex mesospheric waves observed by optical camera
- Mesosphere neutral atmosphere, 50–85 km altitude
- Turbulence driven by atmospheric gravity waves

Turbulence suggests the possible existence of Sporadic-E plasma clouds near 100 km altitude

557.7-nm emission Aug 25, 2003 00:29 UT 557.7-nm emission Aug 25, 2003 02:09 UT

Sporadic-E Observations

- Top panel: Off-site Ionosonde observations of sporadic-E
- Estimated VLA Es scale sizes match fluctuations in August 2003 VLA data
 - 50 km horizontal scale
 - 50–150 m/s speed
 - 5–15 min fluctuations

4

West Arm

6

8

• 6°-70° @ 74 MHz

0.3

0.1

-0.0

-0.1

-0.2

-0.3

2

EC

LWA Overview

- 52 Stations spread over New Mexico (bottom panel)
- Each station consists of sets of phased array antennas
 - Operates from 20-88 MHz
 - Computer controlled beam steering
- Upper Panel at right LWA station 1
- Lower left panel shows antennas at LWA 1
- First station: 256 antennas, 2.8° Beam width at 75 MHz

LWA Station 1 Layout

RASCAL Concept

Rapid All-Sky CALibration (RASCAL) technique proposed to perform ionospheric measurements & calibration

Uses the VLSS sky survey for source selection

RASCAL technique will scan all visible sources with ~10 second cadence

Current implementation: ~100 sources, 1 station, 50 msec dwell, ~6-7 sec scan

RASCAL Simulation

- VLSS sky catalog contains:
 - 16612 sources
 - *Flux* > 1 *Jy*
- Midnight local time on 3/21/2010
 - 52 LWA stations (yellow stars)
 - Minimum source elevation 30°
 - 339 sources visible with fluxes > 10 Jy
 - Given current operating constraints 50 ms dwell and 20% switching overhead – ~20 sec required to sample sources
 - For 17628 total lines-of-sight!
 - High sampling density
 - Ionospheric height 300 km

Summary & Conclusions

- Modern array interferometers are extremely sensitive to the ionosphere
 - Measure the TEC difference between array elements to extremely high precision
 - However, they are insensitive to the absolute TEC
- High temporal resolution ~10 seconds
 - Good for studying traveling structures: TIDs, Sporadic-E, Ionospheric Gradient Evolution...
- High spatial resolution ~10 km
 - Good for mesoscale ionospheric studies
- New ionospheric correction techniques are required providing opportunities for young researchers
- Also, new measurement and calibration techniques promise new ionospheric measurement types

References

- Wijnholds, S. J., S.van der Tol, R. Nijboer, and A.-J. van der Veen, "Calibration Challenges for Future Radio Telescopes: An overview of a daunting parameterestimation task", IEEE Signal Processing Magazine, 2010.
- Clark, B. G., "Coherence in Radio Astronomy", Synthesis Imaging in Radio Astronomy II, ASP Conference Series, Vol. 180, 1999.
- Cornwell, T. and E. B. Formalont, Self-Calibration, Synthesis Imaging in Radio Astronomy II, ASP Conference Series, Vol. 180, 1999.
- Dymond, K. F., C. Watts, C. Coker, S. A. Budzien, P. A. Bernhardt, N. Kassim, P. Ray, T. J. Lazio, K. Weiler, P. C. Crane, P. S. Ray, A. Cohen, T. Clarke, L. J. Rickard, G. B. Taylor, F. Schinzel, Y. Pihlstrom, M. Kuniyoshi, S. Close, P. Colestock, S. Myers, and A. Datta (2011), "A Medium-Scale Traveling Ionospheric Disturbance Observed from the Ground and from Space", *Radio Sci.*, 46, RS5010, doi:10.1029/2010RS004535.
- Coker, C., S. E. Thonnard, K. F. Dymond, T. J. W. Lazio, J. J. Makela, and P. J. Loughmiller (2009), "Simultaneous radio interferometer and optical observations of ionospheric structure at the Very Large Array", Radio Sci., 44, RS0A11, doi:10.1029/2008RS004079.

23

Backup Slides

Interferometer Measurements (1 of 2)

Maxwell's Equations tell us that:

 $\vec{E}(\vec{r}) = \iiint P(\vec{R},\vec{r})\vec{E}(\vec{R})dxdydz$

Assume that the celestial sphere is empty

$$\vec{E}(\vec{r}) = \iint \vec{\mathcal{E}}(\vec{R}) \frac{\exp 2\pi i \nu |R - r| / c}{|R - r|} dS$$

Actually we are interested in the fringe visibility, which is proportional to the expectation value of square of the electric field

$$V_{\nu} \vec{r}_{1}, \vec{r}_{2} = \left\langle \iint \mathcal{E}_{\nu}(R_{1}) \mathcal{E}_{\nu}^{*}(R_{2}) \frac{\exp 2\pi i \nu |R_{1} - r_{1}|/c}{|R_{1} - r_{1}|} \frac{\exp -2\pi i \nu |R_{2} - r_{2}|/c}{|R_{2} - r_{2}|} dS_{1} dS_{2} \right\rangle$$

25

Interferometer Measurements (2 of 2)

The source is assumed to emit incoherently, so the integral is zero except when R₁ = R₂ and the order of the integrations can be reversed:

$$V_{\nu} \ \vec{r}_{1}, \vec{r}_{2} = \iint \left\langle \left| \mathcal{E}_{\nu}(R) \right|^{2} \right\rangle \left| R \right|^{2} \frac{\exp \ 2\pi i \nu \left| R - r_{1} \right| / c}{\left| R - r_{1} \right|} \frac{\exp \ -2\pi i \nu \left| R - r_{2} \right| / c}{\left| R - r_{2} \right|} dS$$

Assuming that R>>r, expanding the exponentials retaining first order terms, and substituting:

$$I_{\nu} \hat{s} = \left\langle \left| \mathcal{E}_{\nu}'(\hat{s}) \right|^2 \right\rangle \left| R \right|^2$$

> We get finally the Measurement Equation (\hat{s} is a unit vector pointing toward the source):

$$V_{\nu} \vec{r}_{1}, \vec{r}_{2} = \int I_{\nu}(\hat{s}) \exp (-2\pi i \nu \hat{s} \cdot (\vec{r}_{2} - \vec{r}_{1})/c) d\Omega$$

26

Total Electron Content Sensitivity (1 of 2)

For a plane parallel ionosphere:

$$\Delta T_{2,1} = T_2(\vec{r}_2, \hat{s}_2) - T(\vec{r}_1, \hat{s}_1)$$

= $\int_0^\infty n(x_2, y_2, z_2) \frac{dz_2}{\mu_2} - \int_0^\infty n(x_1, y_1, z_1) \frac{dz_1}{\mu_1}$

Assuming a small spatial extent for the array and expanding in a Taylor series:

$$\Delta T_{2,1} \approx \int_{0}^{\infty} \left[n(x_1, y_1, z) \mu_1 + \mu_1 \overline{\nabla}_{x,y} n(x_1, y_1, z) \cdot (\overline{r}_2 - \overline{r}_1) - n(x_1, y_1, z) \mu_2 \right] \frac{dz}{\mu_2 \mu_1}$$

> In a plane parallel atmosphere: $\mu_1 = \mu_2$

$$\Delta T_{2,1} \approx \int_{0}^{\infty} \left[\vec{\nabla}_{x,y} n(x_1, y_1, z) \cdot (\vec{r}_2 - \vec{r}_1) \right] \frac{dz}{\mu}$$

> The interferometer is sensitive to the gradient of the TEC

Total Electron Content Sensitivity (2 of 2)

- For ionospheric physics purposes, interferometer sensitivity to phase changes and insensitivity to absolute phase implies that:
 - Interferometers are insensitive to laminar ionospheres
 - Determination of "large scale" phase screens is an under-determined problem
 - Constant TEC terms are lost
 - Also, ionospheric tomography using intereferometers is under-determined due to absolute phase insensitivity and due to insufficient vertical resolution
 - Similar to Computerized Ionospheric Tomography which measures TEC relative to some position (usually the point of closest approach)
 - But instead of a few bias terms ~ number of stations tomography would require thousands of bias terms ~ number of sources the number of stations!
- But interferometers are very sensitive to TEC changes to ~0.001 TECU/deg phase (at ~80 MHz)
 - Great for measuring and monitoring gradients and their time variation
 - Great for detecting traveling structures
 - Maybe use frequency dependence to provide additional information?

28