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What distinguishes nonmigrating tides from
migrating tides?

How are they excited?

What do they look like in space-based (satellite)
observations? (a.k.a What are they talking about
when they say “wave-47?) .



Global Distribution of Solar Heating
from a Space-Based Perspective
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To an observer in space, it looks like the bulge is
fixed with respect to the Sun, and the planet is
rotating beneath it.

In the local (solar) time frame, the heating may
be represented as
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Converting to universal time t,; =t + A/Q, we have

N
heating = O, + > _ A4, cos(nW +n/ - f)
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Implying a zonal phase speed Cph — E =-—=-W
n

To an observer in space, it looks like the bulge is fixed with respect to the
Sun, and the planet is rotating beneath it.

To an observer on the ground, the bulge is moving westward at the
apparent motion of the Sun. It is sometimes said that the bulge is
‘migrating’ with the apparent motion of the Sun with respect to an observer
fixed on the planet.

Since this thermal forcing is periodic, it can excite a wave, called a “thermal
tide”, that can propagate from the lower atmosphere up into the upper
atmosphere where it is dissipated.

This is what things look like if the solar heating is the same at all
longitudes.



For solar heating that varies with longitude, a spectrum of tides is
produced that consists of a linear superposition of waves of various
frequencies (n) and zonal wavenumbers (S):

s=+k

Y >4, (aaloos(we s/ - 7., (2.0)

-k n=1

Similarly, at any given local || At any given longitude, we have
time, we have a sum of || a sum of waves that defines the
waves that defines the local time pattern of heating, as

longitude dependence of before; however, this pattern
heating at that local time. now changes with longitude.
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Transforming back to local time:
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Diurnal Latent Heating and Lower Thermosphere Response
TRMM LH (mW/kg) at 6.5 Km

“Decomposition” of the
diurnal heating rates yields
a spectrum of diurnal
waves, which, when
superimposed, yields the
pattern to the left.
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Spectrum of Diurnal Tides Excited by Latent Heating Due
to Tropical Convection, Modulated by Land-Sea Contrast

Dominant zonal wavenumber
representing low-latitude
land-sea contrast on Earth is
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DE3 Temperature Amplitude Distribution, August 2002,
from TIMED/SABER Measurements
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How Does the Wave Appear from Sun-
Synchronous Orbit?

T, cos| nW+s/ - f, |
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=4 for DE3



SABER Temperature Residuals, August, LST = 1300, 110 km
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Raw temperature residuals (from the mean) exhibit the
wave-4 pattern anticipated for a dominant eastward-
propagating s = -3 diurnal tide.



CHAMP Neutral Densities During Solar Minimum,
7/ days in August, 2008
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Non-symmetric wave-4 and non-anti-phase
between asc/desc parts of orbit
suggests SE2, not DE3
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CHAMP Neutral Temperatures Also Reveal Connections
to Troposphere Excitation of Tidal Waves
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Much of the longitude variability is thought to arise from land-sea modulation of the excitation
of thermal tides that propagate to the thermosphere. DE3 gives rise to a wave-4 longitude
structure when interfering with the sun-synchronous tide, DW1,; similarly, DE2 gives rise to a
wave-3 structure when interfering with DW1.

DE3 = eastward-propagating diurnal tide with zonal wavenumber = 3
DE2 = eastward-propagating diurnal tide with zonal wavenumber = 2
DW1 = westward-propagating diurnal tide with zonal wavenumber = 1 (Sun-synchronous)




Solar Cycle Dependence of DE3 and SEZ2
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SE2 produced by land-sea modulation of semidiurnal
component of solar heating, but also nonlinear interaction
between DE3 and DW1!



Neutral Densities During Solar Minimum, 11-17 December 2008
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CHAMP & GRACE co-planar



The lonospheric Dynamo W >>1,




CHAMP electron densities (~400 km) reveal wave-4
structures due to DE3 driving of the ionospheric dynamo
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