Outflow and Mass Flow: What is Needed from the Magnetosphere Community

R.W. Schunk

Center for Atmospheric & Space Sciences Utah State University Logan, Utah

> Presented at: CEDAR-GEM Meeting June, 2011

1. Spatial and Temporal Resolutions

Mesoscale (100-1000 km) Structures are Common in Ionosphere and Thermosphere

The Dominant Mass, Momentum, and Energy Coupling in the M-I-T System May be at These and Smaller Scales

Mesoscale I-T Structures (100-1000 km)

- Propagating Plasma Patches
- Propagating Atmospheric Hole
- Propagating Polar Wind Jets
- Propagating Neutral Streams
- Sun-Aligned Polar Cap Arcs
- Theta Aurora
- Boundary and Auroral Blobs
- Stationary Polar Wind Jets
- Neutral Polar Wind Streams
- Sub-Auroral Ion Drift Events (SAID)
- Storm Enhanced Densities (SED) Ridges

Causes of Plasma Structures

- Changes in the Solar Wind Drivers
- Structured Electric Fields
- Structured Particle Precipitation
- Time Variations in E-fields and Precipitation
- Time Delays and Feedback Mechanisms in the M-I-T System
- Plasma Instabilities

Examples of I-T Structures

Temporal Resolution

Burch, J. L., Scientific American, 284, 72-80, 2001

- Bastille Day Storm
- July 14-15, 2000
- Snapshots During a 1-Hour Period

Spatial and Temporal Resolutions Needed from the Magnetosphere Community

Convection, Precipitation & Currents

20 km Spatial Resolution and 1 Minute Temporal Resolution

2. Continuous Loss Due to Ion & Neutral Outflow

Demars & Schunk (2003)

Demars & Schunk (2003)

Neutral Polar Wind

Gardner and Schunk (2004)

What is Needed from the Magnetosphere Community

Why do we have Oceans?

Need to Separately Model H⁺ (solar wind), H⁺ (polar wind) and H_S (neutral polar wind)

3. Ionosphere – Magnetosphere Electron Interactions

Schunk & Sojka (1997)

David et al (2010)

Downward Electron Heat Flow

Hot-Cold Electron Contact Potential

Contact Potential (Double Layer)

Offset Hot/Total Electron Density

What is Needed from the Magnetosphere Community

Need to Separately Model the Different Hot Electron Populations (Polar Rain, Squall & Drizzle)

4. Ion Outflow Velocity Distributions are Non-Maxwellian

- Beams
- Bi-Maxwellian
- Asymmetric with Elongated Tails
- Double-Peak
- Pancake
- Conic
- Counter-streaming Ions

What is Needed from the Magnetosphere Community

Need to Determine the Stability of the Magnetosphere in the Presence of Non-Maxwellian Polar Wind Velocity Distributions

5. Global MHD Magnetosphere Models

- Usually are not as Good as Weimer's Empirical Convection Electric Field Model
- The Addition of Ionospheric O⁺ was a Major Advance
- $P = C\rho^{\gamma}$ as an Energy Equation is too Simple

What is Needed from the Magnetosphere Community

Need to Improve the Energy Equation in the Global MHD Magnetosphere Models to Include Collisionless and Wave-Induced Heat Flow What is Needed from the Magnetosphere Community

20 km Spatial Resolution and 1 Minute Temporal Resolution

Need to Separately Model H^+ (solar wind), H^+ (polar wind) and H_S (neutral polar wind)

Need to Separately Model the Different Hot Electron Populations (Polar Rain, Squall & Drizzle)

Need to Determine the Stability of the Magnetosphere in the Presence of Non-Maxwellian Polar Wind Velocity Distributions

Need to Improve the Energy Equation in the Global MHD Magnetosphere Models to Include Collisionless and Wave-Induced Heat Flow