The Equatorial Electrojet

Patrick Alken

Cooperative Institute for Research in Environmental Science University of Colorado at Boulder

June 2010

Outline

- Introduction to the equatorial ionosphere and the equatorial electrojet (EEJ)
- Attempts to model the EEJ
- Plasma instabilities in the EEJ
- Climatology of EEJ
- Future EEJ research

The lonosphere

Image courtesy of http://www.windows.ucar.edu

Ionospheric Conductivities

The Equatorial Electrojet

Early studies of the EEJ

Modeling the EEJ

Modeling the EEJ current

 $\nabla \times \mathbf{E} = 0$ $\mathbf{J} = \underline{\sigma} (\mathbf{E} + \mathbf{u} \times \mathbf{B})$

Conductivity is represented by an anisotropic tensor σ_0 = conductivity in magnetic field direction σ_P = Pederson conductivity perpendicular to magnetic field and in plane of electric and magnetic fields σ_H = Hall conductivity (3rd coordinate direction) which is vertical at the equator.

Theoretical Models

- Untiedt, JGR (1967)
- Electric field only (no winds)
- Meridional current flow important for self consistent model

Theoretical Models

Fig. 2. The eastward current density, j_{ϕ} , for longitude 280°E: in units of 10⁻⁵ amp/m². The driving electric field, $E_{\phi 0} = 2.4 \times 10^{-3}$ volt/m. The shaded areas represent reversed, westward currents.

- Sugiura and Poros, JGR (1969)
- Electric field only (no winds)
- More realistic boundary conditions than Untiedt more accurate modeling of the meridional current system
- Studied current flow at different longitudes (using different conductivity profiles) and found significant differences
- Found westward currents a few degrees off the dip equator

Satellite Data for Modelling

Drifts slowly in local

time

CHAMP (since 2000)

- 450 km altitude, descending
- Drifts rapidly in local time

SAC-C (2000-2004)

- 700 km altitude
- Sun-sync noon-midnight \bullet orbit

EEJ Current Density Inversion

- EEJ latitude profiles at all local times, longitudes and seasons
- EEJ peak current aligns with the dip equator
- Very high day-to-day variation in current strength
- Width of EEJ is constant for a given longitude
- Significant longitudinal dependence of current density

Luehr et al, JGR 109, 2004

Effect of eastward electric field + westward wind

Sum of electric field and wind effects

Fambitakoye, Mayaud and Richmond (1976)

Westward wind

Eastward current

Fambitakoye, Mayaud and Richmond (1976)

Individual CHAMP Profiles allow computation of EEF

Alken and Maus, JASTP, 2009

Correlation with JULIA Electric fields

CHAMP profiles within +/- 10 degrees of JULIA radar Gagnepain, Crochet, Richmond, "Comparison of equatorial electrojet models",

JATP, 39, 1977

Correlation with JULIA Electric fields, all KP

rms error 0.14 mV/m

with 40e correction

CHAMP profiles within +/- 10 degrees of JULIA radar Gagnepain, Crochet, Richmond, "Comparison of equatorial electrojet models", JATP, 39, 1977

Plasma Instabilities in the EEJ

Instability Dispersion Relation

Gradient Drift Instability

Instabilities in the EEJ

Linear Instability theory for typical EEJ conditions:

Gradient drift Ez ~ 0.8 – 1.7 mV/m

Two-stream: Ez ~ 11 mV/m

P. Alken and S. Maus. Relationship between the ionospheric eastward electric field and the equatorial electrojet. Geophys. Res. Lett., 37:L04104, 2010. doi: 10.1029/2009GL041989

Climatology of EEJ

Alken and Maus, JASTP, 2010

Wave-4 Structure

Which tidal harmonic is responsible for the wave-4 structure in the EEJ?

Lühr et al, JGR, 2008.

Future EEJ Research

- Wave-4 studies: determine all tides present in the EEJ for different local times, seasons, longitudes, etc; Improve wind models to include these tides for more accurate modeling of the EEJ
- Instabilities in the EEJ: is the factor-4 correction valid at all longitudes? Is it possible to directly include instability effects in the modeling to avoid using fudge-factors?
- Return currents: how exactly does the EEJ current close?

Relevant Publications

Forbes, J. M. (1981), The equatorial electrojet, Rev. Geophys., 19, 469–504

Onwumechili, C. A. (1997), The Equatorial Electrojet, Gordon and Breach, Newark, N. J.

Heelis, R.A.,2004.Electrodynamics in the low and middle latitude ionosphere: a tutorial. J. Atmos. Sol. Terr. Phys. 66, 825–838

Kelley, M.C., 1989. The Earth's Ionosphere: Plasma Physics and Electrodynamics. Academic Press Inc., San Diego

Fejer, B. G., and M. C. Kelley (1980), Ionospheric irregularities, Rev. Geophys., 18, 401–454