
Gemini3D ionospheric 
modeling tutorial

Michael Hirsch
Boston University Center for Space Physics

2022 June 19
Gemini3D model by Matt Zettergren

Gemini3D/PyGemini funded in part by NSF CAREER, NASA HDEE ROSES, and DARPA Cooperative Agreement HR00112120003 
Boston University subcontract for Embry-Riddle Aeronautical University. This work is approved for public 
release; distribution is unlimited. The information does not necessarily reflect the position or the policy of 
the Government.



Background

• Ionospheric dynamics: well-established models cover a range of scales
• Gemini3D is designed to cover ionospheric dynamics from local to regional 

and global scale, with a key limiting factor being computer system memory 
and computation time

• Gemini3D grid and model physics fidelity can be user-configured
• Gemini3D can run on a student’s laptop or workstation all the way up to 

the largest HPC
• Also cloud computing services like Google Colab, AWS, Azure, etc.

• C/C++/Fortran interfaces to most Gemini3D functions allow assembling a 
custom model ensemble



Simulation setup

• Simulation parameters are specified in a .ini-like text 
file

• Data files can be loaded as specified in the text file 
for a particular initialization 

• For example, patches, irregularities, …
• Models such as MSIS00/2.x, HWM, GLOW, etc. can 

optionally be used to set/drive ionospheric drivers
• Multiple grid types available (cartesian, curvilinear, 

…) as appropriate for geographic size vs. 
simplicity/efficiency

• Near future: adaptive grid mesh refinement

.ini .h5

PyGemini

Gemini3D

MPIexec

MPI workers

HDF5 files

PyGemini



Software Design

• While interfaces such as mpi4py exist, Gemini3D uses a file-based API 
to interface with scripted languages 

• scale up to large simulations on same or different computing platform

• We use scripted input/output because:
• Input/output is the code users most frequently change
• Runtime performance less important for I/O (vast majority of computation 

time is in simulation itself)



Scripted Interfaces

• Gemini3D C++ function interfaces may allow individual Gemini3D 
function use from scripted languages

• Using the whole Gemini3D model can typically use 1 GB of memory 
up to 100s of GB or even terabytes of memory

• A text-file and optional HDF5 data files initialize a simulation
• Milestones allow restarting a simulation 

• e.g. ran over HPC time quota



Scripted Interfaces

• Python (PyGemini) and Matlab (MatGemini) interfaces work 
essentially equally well with Gemini3D

• Some Gemini3D user groups prefer Matlab, while others prefer 
Python

• The data files can be seamlessly interchanged between scripting 
languages

• It is also relatively simple to “port” scripts between Python and 
Matlab or simply invoke the scripts from the other language using the 
general Matlab=>Python and Python=>Matlab binary interfaces



Notebooks

• PyGemini, MatGemini, and Gemini3D itself work with the typical 
“notebooks” 

• Jupyter Notebook for Python, and Matlab’s built-in notebook capability

• Download ABI-compatible Gemini3D binary executable files to cloud 
instances avoids the need to recompile each time



Computer Requirements

• Gemini3D scales from a 2x2 cell overall grid up to arbitrarily large grid 
sizes

• For the smallest simulations, less than 1 GB of RAM/disk is needed
• Many 2D simulations and smaller 3D simulations can be run on a 

laptop or desktop
• Limitation is usually how long user is willing to wait for results—drives 

users to HPC or workstations with large CPU count



Software Requirements

• standard-conforming C++ and Fortran throughout Gemini3D
• Works on any modern operating system and several modern compilers
• All external libraries are built as part of Gemini3D install
• optional scripts to build Python and/or GCC for restricted environments

Known working:
• GCC >= 7.5, Clang >= 6.0, or Intel oneAPI
• Python >= 3.7 or Matlab >= R2020b



Example: 2D simulation: Python PyGemini

• Almost identical procedure to use Matlab MatGemini
• Let’s use an example from the CI test suite for Gemini3D:

https://github.com/gemini3d/gemci/tree/main/cfg/hourly
• We choose mini2dew_fang as it’s one of the fastest and simplest

https://github.com/gemini3d/gemci/tree/main/cfg/hourly


Simulation: Python PyGemini

• Set environment variable GEMINI_ROOT to Gemini3D install location
• PyGemini and MatGemini use this to facilitate easy Gemini3D run on a laptop

• Notebook build example: 
https://colab.research.google.com/drive/1z3wGzoXH7xSp8gtkUrSBLt09V5FP91NJ?usp=sharing

• PyGemini uses “xarray”, which is popular among geospace Python packages
• HDF5 is used throughout the Gemini3D suite for standard data interchange across 

code languages and computing platforms
• Plotting is directly to PNG files to significantly speed up and save human effort

https://colab.research.google.com/drive/1z3wGzoXH7xSp8gtkUrSBLt09V5FP91NJ?usp=sharing


𝑁𝑁𝑒𝑒

𝑇𝑇𝑒𝑒

Two time steps:
The actual simulation time
step is much smaller and
dynamic



Community model

• Over 20 code repositories are associated 
with Gemini3D

• Many under https://github.com/gemini3d
• Comprehensive unit tests and integrations 

tests help mitigate bugs introduced by 
changes

• OS: MacOS, Linux, Windows
• Compilers: GCC, Clang, Intel oneAPI
• Also sweeps across several compiler versions—

we’ve found/reported several compiler bugs 
across vendors

https://github.com/gemini3d

