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Tides

24, 12, 8 hours

1000’s to 10,000 km

Planetary Waves

2-20 days 

1000’s to 10,000 km

Table 1. from Liu [2016]



U.S. Naval Research Laboratory

Global distribution of solar heating from a space-based perspective

Slide provided and adapted from Jeff Forbes

To an observer in space, it looks like the bulge is fixed with respect to 

the Sun, and the planet is rotating beneath it.

In the local (solar) time frame, the heating may be represented as

“local

perspective”

Local time, tLT
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diurnal, (n = 1), semidiurnal (n = 2), etc. tides
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Global distribution of solar heating from a space-based perspective
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To an observer in space, it looks like the bulge is fixed with respect to the Sun, and the planet is 

rotating beneath it.

To an observer on the ground, the bulge is moving westward at the apparent motion of the Sun.  It 

is sometimes said that the bulge is ‘migrating’ with the apparent motion of the Sun with respect to 

an observer fixed on the planet.

Since this thermal forcing is periodic, it can excite a wave, called a “thermal tide”, that can 

propagate from the lower atmosphere up into the upper atmosphere where it is dissipated.

Converting to universal time tLT = t + λ/Ω, we have

Implying a zonal phase speed
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Migrating Diurnal Tide (DW1) Example

Animation provided by Loren Chang 2022 CEDAR Student Workshop | 4
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Global distribution of solar heating from a space-based perspective
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For solar heating that varies with longitude, a spectrum of tides is produced that consists of a linear 

superposition of waves of various frequencies (n) and zonal wavenumbers (s):

implying zonal phase speeds

The waves with s ≠ n are referred to as non-migrating tides because they do not migrate with respect to 

the Sun to a planetary-fixed observer.

Transforming back to local time:

Similarly, at any given local time, we 

have a sum of waves that defines the 

longitude dependence of heating at 

that local time. 

At any given longitude, we have a sum of 

waves that defines the local time pattern of 

heating, as before; however, this pattern 

now changes with longitude.
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Diurnal eastward propagating tide with zonal wavenumber 3 (DE3) example

Animation provided by Loren Chang 2022 CEDAR Student Workshop | 6
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Examples of atmospheric tidal impacts on the thermosphere-ionosphere system 

you might hear about this week
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1. Alter the mean state of the thermosphere-ionosphere system

1. Drive spatiotemporal variability in the thermosphere-ionosphere system

1. Modulate the E-region ionosphere dynamo and drive longitudinal variability in F-region/topside ionosphere

1. Can force distinct features, e.g., midnight temperature maximum and midnight density modulation

1. Non-linearly interact with other tides, gravity and planetary waves

1. Modulate ion-neutral interactions, e.g., equatorial ionization anomaly and equatorial electrojet

1. Play a large role in the ionospheric responses to sudden stratospheric warmings

1. Modulate global intra-annual variations, e.g., thermosphere-ionosphere semiannual oscillation

1. Force day-to-day variations in the thermosphere-ionosphere important for forecasting space weather

1. A number of other processes ….
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Example of tides modulating the E-region ionospheric dynamo and its impact on 

the upper F-region ionosphere
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SABER T(K), 1 Sept. 2008, 16 LST

TIDI U(m/s), 1 Sept. 2008, 15 LST

Fig 1. from Oberheide et al. [2011]

xxx x

x x x x

x x x
x

Fig 2. from Immel et al. [2006]

from Fig. 2 of Pedatella et al. [2008]

DE3: s=-3, n=1

SE2: s=-2, n=2

SPW4: s=4, n=0  
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Rossby (Planetary) Waves

2022 CEDAR Student Workshop | 9

xxx

x x x x

x x x
x

• When we typically think of Rossby (planetary) waves we think of large-scale peaks 
and troughs in the jet stream (or “longwaves”) ….

• Rossby waves can travel both eastward and westward, but they always flow 
westward relative the mean flow.

• In the upper atmosphere, Rossby (planetary waves) generally refer to westward 
propagating rotational modes with periods ranging from longer than 1 day to 
around 20 days or so.

Example of a planetary wave pattern from 

weather.gov

• A specific set of planetary waves, known as Rossby normal modes because of the 

similarities w/meteorological forced waves, are of great interest in MLT and TI system.

• Rossby normal modes (or more commonly just planetary waves or normal modes) are a 

special, forced-free solution to the primitive equations with some assumptions.

• Theory predicts normal mode frequencies to appear at 2, 5, 8, and 12 days, but at MLT 

and TI altitudes, these waves typically occur at periods near ~2,~5,~10, and ~16 days. 

Why?

Dashed = meridional wind

Solid = zonal wind

Fig 2. from Forbes [1995]
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Rossby (Planetary) Waves 🡪 Normal Modes
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• Rossby normal modes are global solutions to 

Laplace’s tidal equation, assuming a isothermal, 

windless, and dissipationless atmosphere.

• What happens though in the real atmosphere that is 

not isothermal, windless, or dissipationless?

• Main Takeaway: Meridional temperature 

gradients, latitudinally-varying mean winds, and 

dissipative processes cause Rossby normal 

mode periods to shift from the 2, 5, 8, 12 day 

periods to Quasi-2,5,10,16 day waves in the 

upper atmosphere.

• A series of comprehensive work by Salby [1979], 

[1981a,b,c], [1984] provided a in-depth look in these 

effects.

Fig 15. from Forbes [1995] and adapted from 

Salby [1981b]
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Example of Normal Modes in the F-region Ionosphere
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Fig 4b and 4c. from Gan et al. [2020]

Fig 3. from Gan et al. [2020]

SABER observed Q16DW signature in the 

mesosphere during the northern winter of 

2018/2019 during a sudden stratospheric warming

At the same time GOLD observed Q16D oscillations 

in the equatorial ionization anomaly 🡪 Could be 

forced by 16d modulation of the tides … 
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Kelvin Wave References (if interested)
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Tidal Nomenclature
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• The positive integer n = 1, 2, ... corresponds to oscillation periods of 24h, 12h, ... and are referred to as diurnal and 
semidiurnal tides, respectively.

• s > 0 (s < 0) corresponds to a westward (eastward) propagating tides.

• When s = n in there is no longitudinal variability around a constant latitude circle and thus these tides are said to be 
migrating (i.e., Sun-synchronous).

• When s ≠ n, a given tide with a frequency nΩ and zonal wavenumber s has a longitudinal variation of |s-n| (i.e., |s-n| 
maxima and minima observed in longitude).  These are non-migrating tides.

• DWs (SWs) or DEs (SEs) to signify westward or eastward propagating diurnal (semidiurnal) tide, respectively, with 
zonal wave number s.

• Standing oscillations (i.e., s = 0) are denoted as D0 and S0.

• Waves with n = 0 are referred to as stationary planetary waves (SPW), with zonal wave number s and are denoted 
as SPWs.
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Definition of an Atmospheric Solar Tide in Words
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Solar thermal tides are global-scale perturbations in 
temperature, wind, pressure, and density, with frequencies 
that are harmonics of a solar day and are excited due to the 
absorption of solar radiation throughout the atmosphere.

Tides excited in the lower and middle atmosphere propagate 
upward and grow in amplitude becoming large until they 
dissipate, depositing their energy and momentum in the 
upper mesosphere and thermosphere.


