EXOSpy: A python package to investigate the terrestrial exosphere and its FUV emission

Gonzalo Cucho-Padin^{1,2}, Dolon Bhattacharyya⁴, David Sibeck², Hyunju Connor¹, Allison Youngblood¹, David Ardila⁴

¹NASA Goddard Space Flight Center, MD, USA
 ²The Catholic University of America, DC, USA
 ³LASP- University of Colorado Boulder, CO, USA
 ⁴Jet Propulsion Laboratory, CA, USA

What is the Exosphere?

- The exosphere is the uppermost region of the terrestrial atmosphere that extends from 500 km up to 60 Earth radii (1RE ~ 6371 km).
- The main component of this vast region is the atomic hydrogen (H).
- One main feature of H is the resonant scattering of FUV emission (or Lyman-alpha (Ly-a) at 121.56 nm)

Apollo 16 Mission [Carruthers et al., 1976]

PROCYON/LAICA [Kameda et al., 2017]

Why do we need to study the Exosphere?

The spatial distribution and temporal evolution of the H density is needed:

- To understand the planetary atmospheric evolution, i.e., escaping rate.
- To understand its role in inner magnetospheric dynamics during storm time, e.g., plasmaspheric refilling, ring current recovery
- To provide support to magnetospheric imaging missions, e.g., ENA, Soft X-ray.

ENA flux:

Soft X-ray emissivities:

$$j_{ENA} = \int j_{ion} \sigma_{H,H^+} \, n_H \, \, dl$$

 $P = lpha n_H n_{sw} \langle g
angle \, [{
m eV.cm^{-3}.sec^{-1}}]$

Adapted from [Catling and Kastling, 2017]

What can we do with EXOSpy?

- EXOSpy provides direct access to <u>several existing</u> <u>terrestrial exospheric models of H density</u>, both data- and physics-based.
- Data-based model have been generated through inversion of optical data such as Lyman-Alpha or soft X-ray emissions. This models are limited to the optically thin region >3RE.
- The physics-based Chamberlain model is also included in EXOSpy and describe H density from the exobase (~500 km)

References of the exospheric model	Instrument(s)	Dimension, range	EXOSpy alias
		of validity [R _E]	
Bailey and Gruntman, (2011)	TWINS/LAD	3-D, [3-8]	B11
Zoennchen et al. (2015)	TWINS/LAD	3-D, [3-8]	Z15MAX, Z15MIN
Connor and Carter, (2019)	XMM-Newton	1-D, [3-12]	C19O01, C19M03
Zoennchen et al. (2022)	UVIS/HDAC	1-D, [3–15]	Z21
Jung et al. (2022)	XMM-Newton	1-D, [3–12]	J22
Cucho-Padin et al. (2022b)	LAICA	3-D, [6-20]	C22

EXOSpy applications: Evaluate current exospheric models

EXOSpy can estimate the Lyman-Alpha intensity along a given line of sight (LOS) using the following formula:

$$I(\hat{n}) = \frac{g^* \Psi(\hat{n})}{10^6} \int_0^{L_{max}} n_H(l) \, dl + I_{IP}(\hat{n})$$

- = H density
 - = scattering factor
 - = scattering function
 - = Interplanetary Ly-a background emission

EXOSpy can be used to evaluate current models and compare predicted intensities with actual measurements.

EXOSpy applications: Calculate exospheric contamination

EXOSpy can estimate the Lyman-Alpha intensity along a given line of sight (LOS) using the following formula:

$$\begin{split} I(\hat{n}) &= \frac{\Psi(\hat{n})}{10^{6}} \int_{0}^{L_{max}} \left(\varepsilon_{0}(l) T(\tau_{H}(l)) e^{-\tau_{O_{2}}(l)} + \varepsilon_{m}(l) T(\tau_{H}(l)) e^{-\tau_{O_{2}}(l)} \right) dl + I_{IP}(\hat{n}), \end{split}$$

 $\overline{\varepsilon_0, \varepsilon_m}$ Tau

l_p

- ε_m = volume emission rate \rightarrow n_H
- u = optical depth
 - = Interplanetary Ly-a background emission

 EXOSpy can be used extract exospheric contamination for current missions observing extra-terrestrial targets (i.e. HST)

EXOSpy applications: Support UV instrument design

EXOSpy can be used to design UV instruments to observe, for example, the exosphere in Lyman-alpha.

- This task typically aims to determine several optical parameters such as
 - FOV (in degrees),
 - pixel resolution (in degrees/pixel),
 - sensor responsivity at Ly-a (in cts/s/R),
 - Integration time (in seconds),
 - The optimal ephemeris,
 - The optimal pointing viewing geometry.

Assessment of parameter selection can be made through SNR measurements or uncertainty in the estimation of byproducts such as hydrogen density.

Summary

EXOSpy can be used:

- (i) to validate exospheric models with actual Ly-α radiance data,
- (ii) to estimate exospheric contamination that may affect extra-terrestrial observations, and
- (iii) to support UV instrument design
- You can easily install EXOSpy using the command: pip install EXOSpy == 2.4 Documentation:

https://exospy.readthedocs.io/en/latest/

★ We invite to submit abstracts to the session on "Dynamic Exospheres of Terrestrial Bodies through the Solar System" at AGU 2023 Fall meeting, session ID 185130

gonzaloaugusto.cuchopadin@nasa.gov Primary Convener Early-career convener

EXOSpy: A python package to investigate the terrestrial exosphere and its FUV emission, Cucho-Padin et al., 2023

The Earth's Outer Exospheric Density Distributions Derived From PROCYON/LAICA UV Observations, Cucho-Padin et al., 2022

A New Approach for 4-D Exospheric Tomography Baser's n Optimal Interpolation and Gaussian Markov Random Fields Cucho-Padin et al., 2023