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Introduction: Risk to Submarine Cables
2 1. Introduction

Ø A submarine communications cable (SCC), a cable laid on 
the sea-bed to carry telecommunication signals across 
stretches of ocean and sea.

Ø Previously, copper wires / coaxial cables used, but since 
90s, they are being replaced by optical fibers.

Ø Impacted / damaged by natural hazards such as
submarine landslides and tsunami.

Ø Recently, there is increased concern about Space weather
effects (High Impact, Low Frequency (HILF) events).

Ø Objective: Build a model for risk assessment of extreme
geomagnetic storm-driven interruptions to cable
operations and instruments along the SCC.



Methodology: Model Flow Diagram
3 2. Model

Ø Model can digest cable position, magnetic data, and ocean-earth conductivity model
Ø Compute transfer function (𝑇!) that relates, seafloor electric field (𝐸") to surface magnetic field (𝐵#)
Ø Compute 𝐸" using 𝑇! and 𝐵# for each cable section
Ø Combine the effect of different cable sections to get total effect on cable
Ø We validate the model outputs against a few analytic solution using synthetic magnetic field data, 

pre-defined transfer functions 𝑇!, and cable geometry.



Python-based implementation
4 3. Python

Ø Documentation of the model is available in readthedocs.io.
Ø The library source code can be found on the SCUBAS GitHub repository.
Ø Installer pip, pip3. 

Documentation GitHub

https://scubas.readthedocs.io/en/latest/
https://github.com/shibaji7/SCUBAS


Case Study: Synthetic 𝑩𝒔 and 𝑻𝒙
5 3. Validation

Ø Synthetic magnetic data: 𝐵# = ∑$%&' 𝐴()) sin 2𝜋𝑓 ) 𝑡 + 𝜙 ) , m 
frequency components.

Ø Analytical solution: E+ t = ∑$%&' 𝑇! ())𝐴()) sin 2𝜋𝑓 ) 𝑡 + 𝜙 ) + 𝜃())

Ø Numerical estimate: E, t = 𝑖𝑓𝑓𝑡 𝐵# 𝑓 ×𝑇! 𝑓
Ø Correlation analysis suggest (𝜌) that model (black curves) is able to 

replicate analytical solution (red curves) with high confidence.



Case Study: Electrically Short and Long Cables
6 3. Validation

Ø Same 𝑇! used for previous
case study.

Ø We synthetically feed an
induced electric field 𝐸" =
1	𝑚𝑣/𝑘𝑚, to an electrically
short (left panel, 100km)
and long (right panel,
10000 km).

Short Long



Testing the model on a real event: March 1989 
7 3. Validation

“EVENT” Δτ, 
min

Measured PFE 
VOLTAGE 

EXCURSION (V)

Modeled cable 
voltage variation (V)

SSC, 01.30 UT, March 13 ~ 2 ~ 75 63

11.10 UT, March 13 ~ 25 ~ 300 223

21.45 UT, March 13 ~ 6 ~ 450 383

01.30 UT, March 14 ~ 25 ~ 700 727



Conclusions, Future work, and Open Questions
8 4. Summary & Conclusions

Ø We developed a model framework to estimate geomagnetic induction effect on the 
submarine cables.

Ø The model is available in GitHub, model is published, you can ‘pip install scubas’.

Ø Future Extension (Science): 
1. Risk Assessment: How vulnerable are submarine cables during Carrington-type 

events? Is there any chance to observe an ‘internet apocalypse’ (i.e., global loss of 
internet coverage, https://www.livescience.com/solar-storm-internet-apocalypse)?

2. Uncertainty Quantification: Quantify uncertainty in the calculated voltage / electric 
field.

3. Nowcasting: Provide real time update on induced electric field and potential along 
the submarine cables.

https://www.livescience.com/solar-storm-internet-apocalypse
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Water Shielding
10 *. Transfer Function



Transfer Function
11 *. Transfer Function

Ø Estimate reflection coefficients for each layer (Γ), and effective reflection coefficients (Γ-)
Ø Estimate impedance 𝑍 for each layer and effective impedance (𝑍") at the sea-surface.
Ø Use sea water depth 𝑑 to estimate transfer function (Boteler et al. 2003)

𝐸"
𝐵#
=
𝑍
𝜇.
.

2

1 + 𝑍
𝑍"

𝑒/0 − 1 − 𝑍
𝑍"

𝑒1/0

where: Z and k are characteristic impedance and propagation constant of the sea water layer.



Distributed Source Transmission Line Model 
12 *. DSTL



Testing the model on a real event: March 1989 
13 *. Validation


