SCUBAS: A python-based numerical model to estimate electrical surges in submarine cables during geomagnetic disturbances

<u>S. Chakraborty¹</u>, M. D. Hartinger², D. H. Boteler³, and X. Shi^{1,4}

¹Center For Space Science and Engineering Research, Virginia Tech, USA ²Space Science Institute, Boulder, CO, USA ³Natural Resources Canada, Ottawa, ON, Canada ⁴High Altitude Observatory, NCAR, Boulder, CO, USA

CEDAR 2023

1. Introduction

Introduction: Risk to Submarine Cables

- A submarine communications cable (SCC), a cable laid on the sea-bed to carry telecommunication signals across stretches of ocean and sea.
- Previously, copper wires / coaxial cables used, but since 90s, they are being replaced by optical fibers.
- Impacted / damaged by natural hazards such as submarine landslides and tsunami.
- Recently, there is increased concern about Space weather effects (High Impact, Low Frequency (HILF) events).
- Objective: Build a model for risk assessment of extreme geomagnetic storm-driven interruptions to cable operations and instruments along the SCC.

2. Model

Methodology: Model Flow Diagram

- > Model can digest cable position, magnetic data, and ocean-earth conductivity model
- > Compute transfer function (T_x) that relates, seafloor electric field (E_f) to surface magnetic field (B_s)
- \succ Compute E_f using T_x and B_s for each cable section
- Combine the effect of different cable sections to get total effect on cable
- > We validate the model outputs against a few analytic solution using synthetic magnetic field data, pre-defined transfer functions T_x , and cable geometry.

3. Python

Python-based implementation

Documentation

- > Documentation of the model is available in <u>readthedocs.io</u>.
- > The library source code can be found on the <u>SCUBAS GitHub</u> repository.
- ➤ Installer pip, pip3.

4

3. Validation

Case Study: Synthetic B_s and T_x

- Synthetic magnetic data: $B_s = \sum_{i=1}^6 A^{(m)} \sin(2\pi f^{(m)}t + \phi^{(m)})$, m frequency components.
- > Analytical solution: $E_a(t) = \sum_{i=1}^6 |T_x|^{(m)} A^{(m)} \sin(2\pi f^{(m)}t + \phi^{(m)} + \theta^{(m)})$
- > Numerical estimate: $E_n(t) = ifft(B_s[f] \times T_x[f])$
- > Correlation analysis suggest (ρ) that model (black curves) is able to replicate analytical solution (red curves) with high confidence.

3. Validation

Case Study: Electrically Short and Long Cables

- Same T_x used for previous case study.
- ➢ We synthetically feed an induced electric field $E_f = 1 \frac{mv}{km}$, to an electrically short (left panel, 100km) and long (right panel, 10000 km).

3. Validation

Testing the model on a real event: March 1989

"EVENT"	Δτ, min	Measured PFE VOLTAGE EXCURSION (V)	Modeled cable voltage variation (V)
SSC, 01.30 UT, March 13	~ 2	~ 75	63
11.10 UT, March 13	~ 25	~ 300	223
21.45 UT, March 13	~ 6	~ 450	383
01.30 UT, March 14	~ 25	~ 700	727

Conclusions, Future work, and Open Questions

- We developed a model framework to estimate geomagnetic induction effect on the submarine cables.
- > The model is available in **GitHub**, model is published, you can '**pip install scubas**'.

Future Extension (Science):

- <u>Risk Assessment:</u> How vulnerable are submarine cables during Carrington-type events? Is there any chance to observe an *'internet apocalypse*' (i.e., global loss of internet coverage, <u>https://www.livescience.com/solar-storm-internet-apocalypse</u>)?
- 2. <u>Uncertainty Quantification</u>: Quantify uncertainty in the calculated voltage / electric field.
- 3. <u>Nowcasting</u>: Provide real time update on induced electric field and potential along the submarine cables.

Thank you!

Citation: Chakraborty S, Boteler DH, Shi X, Murphy BS, Hartinger MD, Wang X, Lucas G and Baker JBH (2022) Modeling geomagnetic induction in submarine cables. *Front. Phys.* 10:1022475. doi: 10.3389/fphy.2022.1022475

> This work supported by NASA 80NSSC19K0907 shibaji7@vt.edu

2

Ocean Depth, km

3

4

5

0

 10^{-2}

 10^{-3}

 f_0 , in Hz

 10^{-6} 10^{-5} 10^{-4}

Transfer Function

- > Estimate reflection coefficients for each layer (Γ), and effective reflection coefficients (Γ_e)
- > Estimate impedance (Z) for each layer and effective impedance (Z_f) at the sea-surface.
- > Use sea water depth (d) to estimate transfer function (Boteler et al. 2003)

$$\frac{E_f}{B_s} = \frac{Z}{\mu_0} \cdot \frac{2}{\left(1 + \frac{Z}{Z_f}\right)e^{kd} - \left(1 - \frac{Z}{Z_f}\right)e^{-kd}}$$

where: Z and k are characteristic impedance and propagation constant of the sea water layer.

*. DSTL

Distributed Source Transmission Line Model

*. Validation

Testing the model on a real event: March 1989 Date: 13-14 March 1989 200 mV/km [mV/km] \vec{E}_{x} (a) 200 mV/km [mV/km] \tilde{H} (b)

12 UT

00 UT

Time [UT]

CS-W[FRD] DO-1[FRD]

DO-2[STJ]

DO-3[STJ]

DO-4[STJ]

DO-5[STJ] MAR[STJ] DO-6[HAD]

CS-E[HAD]

12 UT

— CS-W DO-1 DO-2 DO-3 、100 ∨ I DO-4 DO-5 [Volts] MAR DO-6 — CS-E <u>6</u> 00 UT 12 UT 00 UT 12 UT Time [UT]

Date: 13-14 March 1989

00 UT