
Challenges in Releasing
Academic Software Packages

Dogacan Su Ozturk
UAF Students: Hunter Barndt, Jasmine Kobayashi
JPL Colleagues: Xing Meng, Olga Verkhoglyadova

contact: dsozturk@alaska.edu

Software Packages Developed
• High-latitude Input for Meso-scale Electrodynamics (HIME) Framework at

JPL
https://github.com/dcsozturk/hime

• ML-SoWGap: Machine Learning Models for Solar Wind Data Gaps at UAF
(lead by Jasmine Kobayashi)
https://github.com/Rokkaan5/MLSoWGap-Private

• SAM-III Magnetometer Data Analysis at UAF (lead by Hunter Barndt)
https://github.com/whbarndt/samIII-magnetometer-data-analysis

CEDAR 2023: The Last Python 2

Software Packages Developed but not all are published 😭
• High-latitude Input for Meso-scale Electrodynamics (HIME) Framework at

JPL
https://github.com/dcsozturk/hime

• ML-SoWGap: Machine Learning Models for Solar Wind Data Gaps at UAF
(lead by Jasmine Kobayashi)
https://github.com/Rokkaan5/MLSoWGap-Private

• SAM-III Magnetometer Data Analysis at UAF (lead by Hunter Barndt)
https://github.com/whbarndt/samIII-magnetometer-data-analysis

CEDAR 2023: The Last Python 3

High-latitude Input for Meso-scale Electrodynamics (HIME)
Framework
HIME framework enables using local 2D electric field estimates to drive global circulation models.

Image Credit: AMISR

0.75° by 0.75° 0.35° by 0.35°

(a) (b) (c) (d)

PFISR Measurements 1° by 1°

• Provides 3D “imaging” of electron
density features.

• Can operate continuously.
• LOS velocities used in estimating 2D

electric fields [Nicolls et al., 2014].

Poker Flat Incoherent Scatter Radar

The 2D estimates captured variability
that was not resolved by GCMs.

EX

EY

CEDAR 2023: The Last Python 4

E X
 [m

V/
m
]

E Y
 [m
V/
m
]

40
20
0

-20
-40
-60

100
80
60
40
20
0

-20
06:30 07:00 07:30 08:00

Time [HH:MM]

Estimated vs Simulated Electric Fields

* Profiles extracted from upper boundary.06/25/2020

HIME Framework merges the potentials calculated
from the PFISR E fields with other 2D global electric
potential models to drive General Circulation Models.

High-latitude Input for Meso-scale Electrodynamics (HIME)
Framework

HIME (Python) à
ASCII Output

PFISR Data
(HDF5)

Spacepy (Python)

Apexpy (Python)

GITM Pre-processing
Libraries (IDL) à

Binary Output

GITM (Fortran) à
Binary Output Spacepy (Python)

WEIMER [2005]
Model (IDL/Fortran)

HIME (Python) à
ASCII Output

PFISR Data
(HDF5)

SuperDARN or
individual radars

Numerical
Experiments

Empirical Models SuperDARN/AMIE MHD Model Output

CEDAR 2023: The Last Python 5

Interfacing Process:

Versatility Process:

HIME’s functionality
can be separated into
downsampling,
conversion, and
merging operations.

Various data formats
and programming
languages are used in
HIME Framework.

HIME Framework requires:
- New Technology Release
- A dependencies file.
- Tutorials for different

functionality.

ML-SoWGap: Machine Learning Models for Solar Wind Data Gaps

Geomagnetic activity indices and IMF
values can be used to estimate the solar
wind velocity and density values with a
lower error compared to widely used

interpolation techniques.

From Jasmine Kobayashi’s Capstone Project

Example Decision Tree Architecture

OMNI data is widely used in
statistical analysis and

numerical modelling for
describing the external

driving conditions. However,
significant data gaps occur
during large geomagnetic

storms, creating “an
unbalanced” data set.

ML-SoWGap: Machine Learning Models for Solar Wind Data Gaps

The Random Forest ensemble method achieves superior
results compared to commonly used linear interpolation.

CEDAR 2023: The Last Python 7
From Jasmine Kobayashi’s Capstone Project

ML-SoWGap requires:
- Model features, input

parameters, algorithm
specifications for
reproducibility.

- Extensive error/validation.

SAM-III Magnetometer Data Analysis

CEDAR 2023: The Last Python 8

The software package downloads UAF GIMA and SWUG
magnetometer data, creates Pandas DataFrames and

provide statistical + GIC related information.

From Hunter Barndt’s Capstone Project

Package Architecture

SAM-III Mag. Data Analysis
Package requires:
- Clear description of data

cleaning steps.

Property HIME ML-SoWGap SAM-III Magnetometer
Data Analysis

On GitHub Yes Yes Yes
Lead career stage Postdoc Undergraduate Undergraduate
Developed as a part of
proposal

Yes – [HSR] No – [EPSCoR] No – [EPSCoR]

Published as a journal
article

Yes No No

New Technology Report
Submitted

Yes Yes No

Functionality separated Yes No Yes
License Yes Yes No

CEDAR 2023: The Last Python 9

A quick look at software releases (!)

CEDAR 2023: The Last Python 10

Please go to www.menti.com and use code 7785 7850

http://www.menti.com/

Software Package Release [a Minimal] Checklist
1. Add docstrings and documentation
2. Follow PEP 8 – Style Guide for Python Code
3. Create a layout for the code
4. Determine dependencies and create a requirements.txt file
5. Create a setup.py file
6. Use a formatting tool
7. Use a static code analysis tool
8. Create README file
9. Create License file
10. Create Tutorials
11. Upload to GitHub
12. Maintain GitHub

• Test on GitHub
• Update dependencies.txt as needed (automate)
• Version control

13. Upload code to PyPI

CEDAR 2023: The Last Python 14

Sample Static Code Analysis Tool: Pylint

• Can be used for detecting coding errors, bugs, and style violations.
• Makes suggestions to improve code readability.
• Can be used with integrated development environments.

Easy installation and usage:
>> pip install pylint
>> pylint example.py

Example taken from Codiga.io
15

Code grading helps with evaluating.

How can ChatGPT help with Software Release?

CEDAR 2023: The Last Python 16

1. Package Structure: I can guide you on structuring your Python package properly, including organizing files, folders, and
modules. This includes setting up the necessary files such as `setup.py` and `README.md`.
2. Packaging Tools: I can help you understand and utilize packaging tools like `setuptools` and `wheel`. These tools assist
in creating distribution packages for your Python code.
3. Versioning: I can provide guidance on versioning your software packages following best practices. This includes
choosing appropriate version numbers and managing version dependencies.
4. Dependencies and Requirements: I can assist you in managing package dependencies and creating a
`requirements.txt` file. I can also help you understand and work with tools like `pip` and `virtualenv`.
5. Publishing Packages: I can guide you on publishing your Python packages to package indexes such as PyPI (Python
Package Index). This involves creating an account, preparing the package metadata, and uploading your package.
6. Documentation: I can help you generate documentation for your Python package using tools like Sphinx. This includes
creating docstrings, writing tutorials, and generating HTML or PDF documentation.
7. Continuous Integration: I can assist you in setting up continuous integration (CI) systems like Travis CI or GitHub
Actions. These systems automate tasks such as running tests, building packages, and publishing to package indexes
whenever changes are made.
8. Licensing: I can provide guidance on choosing an appropriate open-source license for your Python package and help
you understand licensing implications.
9. Troubleshooting: If you encounter any issues during the release process, I can help you troubleshoot common
problems and provide solutions.

!!! Beware if using proprietary information or ITAR. Check with institution guidelines.

Further thoughts on releasing software packages.

• Data-associated software packages can prevent misuse.
• ML codes require further attention to ethical practices.
• Incentives like NTR, patent, inventions are very important for early-career

scientists. (immediate CV entries)
• Special Journals/Software-X type Journals to separate software from science

objectives could benefit the community.
• More funding for Tools and Methods, LWS-TM, H-ARD, etc. will help maintain and

upgrade software.
• Special GitHub achievements for Heliophysics could further incentivize wider usage

of commits, pull requests, and issues.
• Citing software rather than including packages in Acknowledgements helps early-

career researchers more.
• Hackatons (AMGeo style) could further help these packages reach wider

audiences.

CEDAR 2023: The Last Python 17

Useful links and resources
• Python Developer’s Guide: https://devguide.python.org/#contributing
• PEP 8 – Style Guide for Python Code: https://peps.python.org/pep-0008/#function-annotations
• Test Python Package Index: https://test.pypi.org/
• Pylint User Manual: https://docs.pylint.org/
• Ethical ML: https://github.com/EthicalML/awesome-production-machine-learning#model-and-data-versioning
• Continuous Integration to GitHub: https://docs.github.com/en/actions/automating-builds-and-tests/building-

and-testing-python
• Semantic Versioning: https://semver.org/
• Choose a License: https://choosealicense.com/
• Software – X: https://www.sciencedirect.com/journal/softwarex

Thank you!
Contact: dsozturk@alaska.edu

CEDAR 2023: The Last Python 18

https://devguide.python.org/
https://peps.python.org/pep-0008/
https://test.pypi.org/
https://docs.pylint.org/
https://github.com/EthicalML/awesome-production-machine-learning
https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python
https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python
https://semver.org/
https://choosealicense.com/
https://www.sciencedirect.com/journal/softwarex

