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Motivation
• Results from CHAMP accelerometry revealed mesoscale (few thousand 

kilometers) mass density structures that coincided with signatures of wind 

influence at the high-latitude thermosphere [1]

• Co-located density and wind structures can indicate a potential relationship 

between mass density and winds that produce perturbations detectable by 

highly sensitive accelerometers

• High-latitude features (e.g., mass density cusp enhancement) are difficult to 

model solely considering direct energy inputs into the thermosphere [2, 3]

• This poster focuses on how mechanical mechanisms (e.g., ion drag) can 

distribute energy and produce mesoscale perturbations in the high-latitude 

mass density and wind structures
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Demonstrating First Law of Thermodynamics Compliance 
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Figure 2: Validation of the first law of thermodynamics using  TIEGCM 
energy equation terms (Eq.4a)

Ø Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM)

• Physical model that self-consistently solves the 3D momentum (Eq. 1) , energy (Eq. 2), and continuity 

equation of the entangled ionosphere-thermosphere system and coupled with the magnetosphere [4]

• Outputs thermospheric state properties and individual heat terms, enabling a detailed energy analysis

Ø Linking the TIEGCM energy equation to thermodynamic principles 

• TIEGCM’s energy equation is directly mapped to the first law of thermodynamics shown (Eq. 4a)

• At 400 km, negligible eddy diffusion simplifies the energy balance to adiabatic (mechanical work) 

and diabatic (external heating/cooling) processes

• Adiabatic and diabatic heat terms can also be expressed using temperature, potential temperature, 

and vertical winds (Eq. 4b) [5]

Ø Imposing mechanical forcing in TIEGCM

•  To investigate how mechanical forcing can modify the mass density and wind structures, two model 

scenarios are developed at analyzed constant altitude:

• Run 1: Baseline

• Kp = 2, F10.7 = 150 solar flux units, solar maximum, June solstice

• Run 2: Increased mechanical forcing

• Identical solar inputs as Run 1

• The momentum equation (Eq. 1) is modified by doubling the ion drag force at high-latitudes
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Results Discussion
Connecting the First Law of Thermodynamics to TIEGCM

• TIEGCM has been verified to satisfy the first law (see Fig. 2) 

at the high-latitude thermosphere

• Thermosphere energy exchange can be reduced to:

• Internal energy changes (total temperature rate)

• Diabatic heating (solar heating, joule heating, etc.) 

• Adiabatic processes (expansion/compression work)

• Thermosphere state variables (temperature, potential 

temperature, vertical winds) enable the tracking of diabatic and 

adiabatic contributions via Eq. 4b

• This framework provides a diagnostic tool to assess 

the drivers of energy distribution in the 

thermosphere without requiring the full energy 

equation (Eq. 3)

• Divergent vertical winds captures the adiabatic 

temperature changes due to expansion/compression 

without external heating 

• Potential temperature variations capture the net diabatic 

heating contributions

Implications Modeling and Observing Mesoscale Structures

• The formation of mesoscale structures (e.g., neutral cusp 

enhancement) must consider both direct energy sources 

(e.g., joule heating) in addition to momentum-driven 

sources responsible for net adiabatic effects

• Figure 10 demonstrates how direct and indirect energy 

mechanisms can produce similar heating/cooling

• In-situ satellite measurements can track diabatic and adiabatic 

energy transfer using accurate measurements of few 

observables: pressure, temperature, and wind 

• Can help explain the underlying mechanisms 

responsible for the observed acceleration perturbation 

responses from Fig. 1
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Figure 3: Validation of the first law of thermodynamics using observable-
based diabatic and adiabatic heating terms (Eq. 4b)

• Figure 2 demonstrates that TIEGCM satisfies the first law of thermodynamics

• Left-hand side (total temperature rate) equals the right-hand side (sum of the diabatic and adiabatic terms)

• Figure 3 shows that the diabatic and adiabatic heating rates can be directly computed from observables, reproducing the 

balance in Fig. 2

• Note: The first law of thermodynamics computes the total (material) derivatives, composed of the local time rate of change 

and advective terms

• Including advective terms can make a qualitative analysis with observables difficult to interpret

• In this analysis, the advection terms approximately cancel, which allows a reduced form of the first law as shown in Eq. 5 

Tracking Diabatic vs Adiabatic Influence
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Figure 1: Results from Buynovskiy et al. (2025) demonstrating relative accelerations in the 
ascending and descending satellite trajectories with an analysis of density-wind dominance and 

detected wind perturbations

⋅ ⋅ ⋅ ⋅ (Eq. 5)

Figure 4: Thermospheric state for run 1 (baseline) at UT = 01:00 Figure 5: Reduced first law terms (Eq. 5) for run 1 at UT = 01:00 Figure 6: Run 1 diabatic vs adiabatic indicator

Figure 7: Thermospheric state for run 2 (enhanced ion drag) at UT = 01:00 Figure 8: Reduced first law terms (Eq. 5) for run 2 at UT = 01:00

Figure 10: Thermosphere state comparison between run 1 and run 2

• Figures 4-9 illustrate the thermospheric states and corresponding diabatic/adiabatic energy contributions 

for runs 1 and 2 after one hour, organized in geomagnetic coordinates

• Run 1 (Fig. 4-6) show a near steady-state system with small diabatic/adiabatic effects

• Run 2 (Fig. 7-9) demonstrates strong increases in diabatic/adiabatic and dominant adiabatic 

responses driven by increased ion drag

• Figure 10 compares the thermospheric state between Runs 1 and 2,  revealing mass density changes up 

to 20%, temperature changes up to 50 K, and up to 200 m/s changes in the horizontal winds

Where T is the neutral temperature, P is the in-situ pressure, Po is a reference pressure (1e-5 Pa for this case), θ 
is the potential temperature, R is the specific gas constant, and cp is the specific heat at constant pressure

Figure 9: Run 2 diabatic vs adiabatic indicator

Negligible at 400 km

(Eq. 4a)

Thermosphere Response to Induced Mechanical Forcing

• Ion drag (a momentum term) was doubled in a TIEGCM 

simulation, producing the following changes after one hour:

• Mass density changes up to 20%

• Temperature changes up to 50 K

• Horizontal wind changes up to 200 m/s

• The thermosphere response followed a self-consistent 

feedback:

• Momentum forcing induced à winds respond à 

heating terms adjust à further dynamic response

• Adiabatic heating/cooling can match or exceed diabatic 

contributions, with a strong effect seen with a momentum-

induced case study (see Figure 9 vs Figure 10) 

• Direct heat sources are not needed to significantly 

modulate the thermosphere mass density, 

temperature, and winds

Figure 10: Direct vs indirect energy mechanisms [6] 
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