

A Statistical Survey of F2 Layer Peaks Properties in the Polar Cap Ionosphere Observed by RISR-N

Michael T. Lundquist¹, Roger H. Varney¹,

¹ UCLA Department of Atmospheric and Oceanic Sciences, University of California Los Angeles.

Email: mlundqui@ucla.edu

Fitted RISR-N Electron Density Example Statistical Analysis Introduction **RISR-N Electron Density** • A full solar cycle's worth of observations have been collected by Used the Welch's t-Test, assuming unequal variances between 12.0 لے 600 the lifted, dense, and both events' geophysical conditions and the the Resolute Bay Incoherent Scatter Radar. 11.5 E geophysical conditions over all RISR-N one minute integration Altitude 005 du • In these high-latitude ionosphere observations, there are **highly** period observations. -11.0 3 dynamic F2 Layer peak features **Decoupled events** by averaging over all events within a 24-hour range to ensure independence in the sampling of geophysical • High electron density observations in the **night side** sector of the parameters. Hence the decoupled array mean/medians differ Fitted Electron Density 12.0 high-latitude ionosphere are typically transported **across the** from means/medians over all lifted, dense, or both events. - 600 آلا [لا 11.5 E polar cap from the day side, and would have an upwards **Red** signifies statistically significant negative t-score and blue Altitude 200 signifies statistically significant positive t-score for $p < 10^3$. component of their ExB drift, causing lifted F2 Layer peaks. 11.0 🛱 Median p-Value Variable Mean

Research Question

What geophysical conditions predict lifted or enhanced F2 Peak electron densities in the polar cap ionosphere?

• We analyzed the **electron density**

excluding the vertical beam

data were used for this study

NmF2(t)

hmF2(t)

Hb(t)

Ht(t)

Data/Methods

Resolute Bay Incoherent Scatter Radar - North (RISR-N)

Ne(z,t)∎

 $N_e(z) = \langle$

• **RISR-N** utilizes **long pulse ISR** to collect Ionospheric layer conditions such as electron density, temperature, etc. • **RISR-N** is located at ~75° N, ~95° W and faces the magnetic north pole

ExB

• Altitude resolution varies in database

Data Processing Methods

- We fit an **Epstein Layer Model** (Eq. 1) to the electron density observations, weighted by errors from RISR-N.
- A 4-Parameter (NmF2, hmF2, Ht, and Hb) nonlinear least squares Levenberg-Marquardt method was
- 10.5 Experiment hmF2 for IRI vs ECHAIM hmf2 IRI E 400 hmf2 ECHAIM - RISR Fits hmF2 200 Experiment NmF2 for IRI vs ECHAIM 1e12 — Nmf2 IRI Nmf2 ECHAIM [] observations from the highest-elevation beam, 18 00 00 UT [hour] Starting From 3-5-2016 • Only **1 minute** integration period **long-pulse** Figure 4(a-d): 4a highlights raw range, time, and intensity (RTI) plots of RISR-N electron density. 4b is the same RTI after going through our fitting process. 4c-d show the isolated hmF2 and NmF2 compared with empirical model outputs from IRI and E-CHAIM. Bz(t) AE(t)Results v_{SW}(t ... etc. Lifted & Dense Events AE Distribution Lifted & Dense Events Solar Wind Speed Distribution 6×10^{1} a — 445 nT — 443 km/s 40- $\int 4N_{mF2} \frac{e^{X}}{(1+e^{X})^{2}}, \ X = \frac{z-h_{mF2}}{H_{h}}, \ z \le h_{mF2}$ 4×10^{1} — 476 nT 430 km/s 3×10^{1} 20- 2×10 1500 2000 300 400 500 600 1000 2500 700 800 Equation 1: The Epstein Layer Model Lifted Events AE Distribution Lifted Events Solar Wind Speed Distribution 10³ b • Only observations between **140-570 km** — 304 nT — 465 km/s

Solar Wind Speed [km/s]	Lifted	440	422	2.55e-08
	Dense	395	383	5.22e-07
	Both	406	395	0.326
	Database	416	392	
AE [nT]	Lifted	252	184	3.12e-15
	Dense	182	130	0.902
	Both	323	161	0.004
	Database	183	97	
Dynamic Pressure [nPa]	Lifted	2.50	2.04	1.62e-05
	Dense	2.12	1.71	0.823
	Both	3.31	2.56	0.005
	Database	2.11	1.67	
B_z [nT]	Lifted	-0.582	-0.494	0.003
	Dense	-0.76	-0.50	3.85e-04
	Both	-2.67	-0.86	0.006
	Database	-0.19	-0.20	
B_y [nT]	Lifted	0.388	0.208	0.004
	Dense	0.282	0.410	0.062
	Both	0.424	1.287	0.542
	Database	-0.04	-0.18	
$\overline{E_y ~[{ m mV/m}]}$	Lifted	0.30	0.23	3.35e-04
	Dense	0.32	0.22	1.35e-04
	Both	1.21	0.50	0.004
	Database	0.08	0.07	

Case

used for fitting

RISR-N Electron Density vs Fit at 2016-03-06 21:12:07

were considered to isolate the F2 peak

OMNI Interpo

SW Data

We compared **adjacent time steps** and beams to check for satellite echoes corrupting electron density observations

- Along with fitting, **solar wind** parameters from NASA's OMNI satellite were interpolated over the RISR-N data for direct comparison
- We also collected **empirical model** estimations of **hmF2** and **NmF2** at the time of each RISR-N observation from the **Empirical Canadian High Arctic** Ionosphere Model (E-CHAIM) and the International Reference Ionosphere Model (IRI).

Lifted or Dense Event Detection Algorithm

- Compared our **fitted hmF2** and **NmF2** to empirical model outputs from E-CHAIM
- Defined two metrics ($\Delta NmF2$ and $\Delta hmF2$) to quantify exceptionally high hmF2 and NmF2, and calculated both for the database.
- Each experiment was iterated through, and if a point's Δ NmF2 or Δ hmF2 were greater than **1.5x the IQR** of the **median** Δ NmF2 and

F10.7 [sfu]	Lifted	108	83	2.21e-04
	Dense	117	106	0.822
Table 1. Means, medians, and calculated	Both	137	133	0.008
p-values for geophysical parameters.	Database	116	95	

Conclusion / Discussion

- **Dense Events** are **heavily uncorrelated** with geomagnetically active times (High AE).
- Lifted Events are heavily correlated with high speed streams / fast solar wind speeds.
- Lifted Events are correlated with periods of **low F10.7**.
- This hints at a correlation between **lifted F2 Layer peaks** and the appearance of **corotating interaction regions (CIRs)** due to their **high solar wind speed** and moderate level of geomagnetic activity, but further analysis is required to understand the underlying driving processes.
- There is a strong dependence on **winter months** to produce dense events, consistent with previous polar cap patch studies.
- Time of day and seasonal dependencies for **dense events** are consistent with previous statistical surveys on polar cap patches