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Introduction Fitted RISR-N Electron Density Example Statistical Analysis

e A full solar cycle’s worth of observations have been collected by RISR-N Electron Density f e Used the Welch’s t-Test, assuming unequal variances between
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, . . . . = Database  2.11 1.67
collect Ionospheric layer conditions such observations from the highest-elevation beam, =z |_Yhd _
as electron density, temperature, etc. excluding the vertical beam 0- 15 18 00 06 15 B, [nT] Lifted -O».58'2 -O_.49¥4 0.003
e RISR-N islocated at ~75° N, ~95°W @ Only 1 minute integration period long-pulse UT [hour] Starting From 3-5-2016 Dense -0.76 -0.50 3.80e-04
and faces the magnetic north pole data were used for this study Figure 4(a-d): 4a highlights raw range, time, and intensity (RTT) plots of RISR-N electron density. 4b is the same RTT after going Both -2.67 -0.86 0.006
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S (geomagnetically active periods). e Dense events occur more frequently to their high solar wind speed and moderate level of
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