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- BACKGROUND SUMMARY

Specular meteor radar (SMR) utilizes ionized meteor trails as tracers of opportunity, remaining one of The performance of meteor radar transmit-receive links are estimated using a
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EMPIRICAL METEOR DISTRIBUTIONS SIMULATED SCATTERING Stochastic Meteor Parameters
: o o The reflected power depends on the geometry of where the meteor, transmitter, and receiver are
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Performance Metrics vs. Separation Distance
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