Seasonal & Interhemispheric Comparisons of Geocoronal Ha **Observations & Forward Modeled WACCM-X & NRLMSISE-00 Simulations**

L. T. Ashworth¹ (ashwortl@my.erau.edu), E. J. Mierkiewicz¹, S. M. Nossal², L. Qian³, J. M. McInerney³, L. M. Haffner¹, & R. C. Woodward² ¹Embry-Riddle Aeronautical University, Daytona Beach, FL; ²University of Wisconsin-Madison, Madison, WI; ³NSF National Center for Atmospheric Research, Boulder, CO

Introduction

From 2000-2001, ground-based geocoronal hydrogen Balmer- α (H α) observations were obtained from Pine Bluff Observatory (PBO) in Wisconsin (43.07°N, 270.33°E) using a high spectral resolution (R ≈ 80,000) Fabry-Perot interferometer (FPI). Bishop et al. (2004) compared the PBO March 2000 observations to forward modeled MSISE-90 H α intensities using the radiative transport code, lyao_rt (Bishop, 1999). Results indicate that hydrogen column abundances exceed those predicted by MSISE-90. Furthermore, Gallant et al. (2019) compared the PBO 2000-2001 observations to NRLMSISE-00 (MSIS-00) H α intensities generated by Iyao_rt. It was found that the observed dusk-to-dawn intensity variation and MSIS-00 show good agreement near the equinoxes and summer solstice, however, MSIS-00 underestimates the dusk-todawn asymmetry near the winter solstice (Gallant et al., 2019). More recent work has focused on forward modeling Whole Atmosphere Community Climate ModeleXtended (WACCM-X) simulations for three separate observatory locations, including PBO, Kitt Peak National Observatory (KPNO) in Arizona (31.98°N, 111.60°W), and Cerro Tololo Inter-American Observatory (CTIO) in Chile (30.17°S, 70.80°W). In this study, we focus on comparing PBO WACCM-X forward modeled simulations for the equinoxes and solstices to MSIS-00 and the PBO FPI observations. These comparisons are qualitative as the WACCM-X simulations are not fully representative of the observations and were run for the years 2001-2005, perpetual solar maximum conditions, and UT = 0. We also compare the PBO, KPNO, and CTIO WACCM-X simulations for the same conditions to conduct an interhemispheric comparison. Overall, this work aims to contribute to validating hydrogen variability within the WACCM-X numerical model.

Data Description

- \oplus Dual etalon FPI with a resolving power of R \approx 80,000 at H α and a spectral resolution of ~0.08 Å.
- ⊕ Series of 20 observing runs between 2000 and 2001 taken at PBO (43.07°N, 270.33°E).
- \oplus Solar conditions (F_{10.7} index) vary between 122 and 277 (average 181).
- \oplus Geomagnetic conditions (Ap index) vary between 2 and 82 (average 13). \oplus Each data set includes multiple nights of observations within a two-week period centered around the new Moon.

See Mierkiewicz et al. (2012) for more details.

 \oplus In this work, evening PBO FPI observations near the equinoxes and solstices are compared to PBO WACCM-X forward modeled results (see Figure 1).

Model Description

	WACCM-X	MSIS-00	WACCM-X s
Location	PBO, KPNO, CTIO	PBO, KPNO, CTIO	thermospheri and density pi as inputs
Year(s)	2001-2005	2000	
Day of Year	79, 172, 265, 355*	79, 172, 265, 355	
Hour	UT O	UT O	<i>Lyao_rt</i> extend model atmosp
Kp Index	3	N/A	hydrogen, t altitudes usii analytic exosph
Ap Index	N/A	15	
F _{10.7} Index	200	200	

Table 1: WACCM-X and *lyao_rt* inputs used to obtain WACCM-X and MSIS-00 forward modeled intensities. (*) denotes the day of year used for every year except 2004 (leap year). Chart 1: The *lyao_rt* process begins with temperature and density profiles from WACCM-X/MSIS-00 and results in calculated forward modeled intensities.

simulations of ic temperature rofiles are used to lyao_rt.

ls the WACCM-X phere, including to exospheric ng the Bishop nere model (1991).

Lyao_rt uses the extended [H] profile and observational viewing geometry to calculate line-of-sight H α emission intensities.

presented. The slope of "observed"/MSIS-00 is flatter than that of the slopes between the "observed" and each WACCM-X simulation.

