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ABSTRACT
Romashets and Vandas (2020, 2022) derived Euler
potentials for field-aligned currents (FACs) above
the ionosphere, introducing a local parameter g
controlling current density. The case of constant g
was modeled in Romashets and Vandas (2025) to
analyze vertical shell current distribution. Mod-
eling with variable g is more complex. Here, we
present results for shell current density, magnetic
field, and Euler potentials inside the ionosphere,
using a realistic, observation-based g derived from
Korth et al. (2010) FAC data for quiet and dis-
turbed periods.

INTRODUCTION
• In previous research, we constructed Eu-

ler potentials to describe Earth’s magne-
tosphere—combining Earth’s dipole field,
field-aligned currents, the ring current, and
surface currents modeled by Dungey’s term.

• Field-aligned currents, or Birkeland cur-
rents, connect the magnetosphere to the
ionosphere and close through horizontal
currents known as shell currents. These are
key to regulating Earth’s magnetic environ-
ment.

• While FACs can be traced from satellite data,
their ionospheric closure paths—especially
Pedersen and Hall currents—are harder to
define due to the complex conductivity
structure of the ionosphere.

• To overcome these challenges, we divide
the system into three regions and incorpo-
rate both the dipole field and FAC-generated
fields. This lets us calculate current densities
in a realistic, finite-thickness ionosphere.

RESULTS

Fig 1: Profiles of (a) φ component of the magnetic
field and (b) θ component of the electric current
density.

• The ϕ component of the magnetic field (for
θ = π

6 ) shows a smooth transition across the
ionosphere, using g0 = 0.006 to represent
strong geomagnetic activity.

• The electric current density (in the ϕ direc-
tion) peaks around 300 km altitude, confirm-
ing the expected behavior of shell currents in
the ionosphere.

• The tanh (step-up) function used to smooth
the magnetic field is validated, showing ex-
cellent fit (Figure 2a).

Fig 2: (a) Profiles of Fit of the step-up function,
red line, by a sum of power functions, dashed blue
line, in the ionosphere. (b) The given (red line)
and model (dashed green line) φ component of the
magnetic field.

• The total magnetic field, recalculated using:

B = ∇α×∇β

matches the original field very well (Figure
2b), validating the model’s accuracy.

• The model successfully reproduces smooth,
realistic variations in magnetic field and cur-
rent density, consistent with observations
during geomagnetic storms.
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DISCUSSIONS

Fig 3 (a) By in the layer. (b) Euler potential α in
the layer for y = 0.

In the planar model (−x0 < x < x0), the y-
component of the magnetic field is:

By =
1

2
B0

(
1 + tanh
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3x
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))

Fig 4: Current density in the layer.

The spherical ionospheric model describes a tan-
gential magnetic field discontinuity above the
ionosphere and accurately captures the balance
between Pedersen and Hall currents by combining
toroidal and poloidal components.

METHOD
Euler Potentials for Inner & Outer Regions:
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Using Tanh Function for Smooth ϕ Field
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The smooth transition of the magnetic field is
modeled using the function:
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This function is approximated by a power series:
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Once the coefficients are known, β is constructed
as:

β = −φ+
I∑

i=1

ci Ri(r)Θi(θ)

Divide 100–400 km into 4 subintervals; fit each
separately and apply fk(α) to keep β smooth and
continuous.

Current density is calcualted after obtaining
smooth β, we get Jr = 0, Jφ = 0, and
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µ0∆rr sin θ

· sech2
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)
.

CONCLUSION
This study develops continuous Euler potentials
to model charged-particle motion with smooth
magnetic field transitions. A tanh function en-
sures continuity, with adjustments to across four
regions. The approach applies to ionospheric
currents, solar wind interactions, and magneto-
spheric boundaries, providing a useful tool for
space weather and plasma studies.


