

Iniversity of Colorado Boulder

Abstract / Introduction

Background:

 Key issue in previous studies is the limitation of data source(s) with good spatial or temporal resolution, especially difficult to achieve both Tomography (3D imaging) allows us to utilize the potential of all sources together to fill data gaps

 Previous research has been done in our lab detecting polar structures using GNSS-R over polar regions and oceans, where receivers are not feasible

 Develop a new tomographic algorithm which can ingest reflected satellite signals to improve ionospheric imaging Bring together a larger variety of data

Method: Combine ground-based GNSS and GNSS Radio Occultation (GNSS-RO) with GNSS Reflectometry (GNSS-R), data derived from Precise Orbit

using IRI2020 (PyIRI) as a base New algorithm relies on a forward Voronoi method and simultaneous

when incorporating low-elevation and reflected signals

Precise Orb

econstructior

Integrating New GNSS Methods into 3D lonospheric

Imaging: A Simulation Study

Brenna Royersmith, Brian Breitsch, Y. Jade Morton University of Colorado Boulder

Tomographic Algorithm

COLORADO CENTER FOR STRODYNAMICS RESEARCH

Analysis							
Source Type	Total Number of Rays	Low- Elevation Rays	% of low- elev rays out of total	% of total number of rays			
Ground	4,397	2,397	54.5 %	6.3 %			
GNSS-RO	48,794	35,151	72.0 %	70.4 %			
GNSS-R	16,079	7,858	48.9 %	23.3 %			
All Rays	69,270	45,406	65.5 %	100 %			
Table 3. Total numbers for each data source type, including the number and percentage of low-elevation rays included with each type.							
Voxel Intersections Histogram Intersection Lengths Histogram							
ion number 10 ³	 w/ GNSS-R + lov w/o GNSS-R w/o low-elev w/o GNSS-R OP 	velev fi low-elev low-elev	w/ GN w/o G w/o lo	NSS-R + lowelev SNSS-R ow-elev SNSS-R OB low-elev			

Figure 2. Example of the tomographic process². A model ionosphere is used as a base. Data (simulated here) is collected from rays traveling through the imaging area. These data are assimilated into an algorithm which sorts which measurements intersect the grid (voxels) and where, resulting in an updated model image that better reflects the real data and more accurately represents the ionosphere.

Inversion Method				
Voxel-based inversion method:				
 Base ionosphere model (IRI2020) is broken into a grid of voxels. 				
 To keep voxels evenly distributed, stereographic coordinates are used in place of geographic. 				
 A Voronoi forward method³ is employed to find the voxel intersections of each ray path. 				

Figure 3. Ionosphere model voxel grid points

TEC_{POD}

TEC_{RO}

- TEC_{LE}

over the north pole, shown in dark purple.

Yellow dots are ground receivers.

Voxel

 \frown

TEC_i

parameters with real receivers (see Table 1)	GNSS Constellation		Number of Satellites		Orbital Planes		Inclination (°)) Altitude (kr		
 Reconstruction is run over a 10- 	GPS		30			6	55	55		20,180	
minute period, grid resolution is	GLONASS		24		3		64.8		23,200		
500km x 500km x 25km	GALILEO			24		3	56		19,130		
 We define "error" as the 	Ground Receivers		Number of Receivers		Category		Latitude Cutoff (
difference between the base	IGS		38		High Latitude		55				
image (values in Table 2)	CHAIN		16		High Latitude		55				
 Mean error refers to the average 	Madrigal		29			High		60			
difference. RMSE is the root	SeNSe		5		High Latitude			55			
mean square of the difference.	Table 1. Orbital parameters for GNSS and LEO constellations and ground receiver info.										
IRI2016 Model with Gaussian Depletion				RMSE w	/	ME w/	RMSEw/o	MEw	/o	Mean	
Altrice along northing	# LEO	Ray #		GNSS-F (1e9m ⁻³	R G ') (1	SNSS-R 1e9m ⁻³)	GNSS-R (1e9m ⁻³)	GNSS (1e9n	S-R ∩ ⁻³)	Differen (ref – no r	
99 6 5	1	6,261		7.55		5.75	8.28	6.1	4	0.15	
4	5	17,074		7.18		5.11	8.07	5.7	4	0.42	
along	10	30,809		7.07		4.06	8.05	5.0	6	0.75	
easting	15	44,211		6.58		3.15	7.97	4.5	1	1.02	
0 _1	20	56,568		6.07		2.81	7.94	4.0	7	1.19	
	24	67	,228	5.41		2.40	7.84	3.8	0	1.32	
-2 -1 0 1 2 3 4 5 Easting 1e6	Table 2. Collection of error/RMSE values comparing the addition of ray paths / reflection.										

parameters with real receivers

lination (°)		Altit	ude (km)	Conclusions					
55 20,1		0,180	Resulte Discussion:	Challonges					
64.8		23,200		Nesulis Discussion.	Chanenyes.				
56 19,130		9,130	 The new ionospheric tomography 	 How to distinguish sTEC along incide 					
y Latitude Cutoff (°)		Cutoff (°)	images of the ionosphere using simulated satellites and data	 Simulation is very optimistic and 					
ıde	de 55		5		idealistic, leading to questions about				
ıde	de 55		5	• We see that overall, the more satellites	accuracy and feasibility.				
ide 60)	due to more voxel ray path	Future Work:					
ıde 55		5	intersections.	 More complete analysis on the impatient 					
ns and ground receiver info.		er info.	The addition of GNSS-R ray paths alone	low-elevation satellite signals					
Ew/o S-R m ⁻³)	ME w/ GNSS- (1e9m	/o -R - ³) (Mean Difference ref – no ref)	does improve image quality, but only marginally.	 Study the possibility of adding covariance matrices to reconstruction for regions with no data intersections 				
28	6.14		0.15	Low-elevation satellite signals make up over half of the included observables	 Pool data processing and validation 				
)7	5.74		0.42	areatly contributing to the performance	- Real uata processing and valuation				
)5	5.06	6	0.75	of our algorithm	 Separating incident and reflected sTE 				
97	4.51		1.02						
94	4.07	7	1.19	References and A	cknowledgements				

¹ C. Zuffada, C. Chew and S. V. Nghiem, "Global Navigation Satellite System" Reflectometry (GNSS-R) algorithms for wetland observations," 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 2017, pp. 1126-1129, doi: 10.1109/IGARSS.2017.8127155.

 Currently searches the entire imaging area for intersections but is being updated to only search neighborhoods around rays to speed up calculation.

 Inversion reconstruction of the image is done using a simultaneous multiplicative algebraic reconstruction technique $(SMART)^4$.

 $N_e(x, y, z)$ $L_{1,NMK}] [N_e(x_1, y_1, z_1)]$ TEC₁ $= \begin{vmatrix} L_{1,1} & \dots \\ \vdots & \ddots \end{vmatrix}$ $\dots \quad L_{N,NMK} \left[N_e(x_N, y_N, z_N) \right]$

Inversion: $N_e = H^{-1}TEC$

Figure 4. Visualization of how various ray path geometries (Figure 1) travel through voxels (right) to aid understanding of the main inversion equation (left).

² T. Hu, X. Xu and J. Luo, "A Global CIT Model Fusing Ground-Based GNSS and Space-Borne LEO Satellite Data for Monitoring the Geomagnetic Storm," in *IEEE* Transactions on Geoscience and Remote Sensing, vol. 62, pp. 1-11, 2024, Art no. 5801311, doi: 10.1109/TGRS.2024.3412953.

³ Franz Aurenhammer. Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput. Surv. 23, 3 (1991), 345–405. https://doi.org/10.1145/116873.116880

⁴ Gerzen, T. and Minkwitz, D.: Simultaneous multiplicative column-normalized method (SMART) for 3-D ionosphere tomography in comparison to other algebraic methods, Ann. Geophys., 34, 97–115, https://doi.org/10.5194/angeo-34-97-2016, 2016.

This project is funded by ONR contract # N00014-23-1-2145 and others by coauthors. Work is based on previously unpublished algorithms developed by Brian Breitsch, whose help is greatly appreciated and has greatly contributed to this project.

Contact info: Institution Email : Brenna.Royersmith@colorado.edu