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Comparison with Oguti and Hayashi (1984) Characteristic energy and period dependence

The 1onospheric structure of pulsating aurora bears further investigation, In * The 1984 model predicts a southwest-directed current flow as a result of the southward * The Input precipitation varies @ 0 e | I
particular to understand the drivers of pulsating aurora and the impact those electric field, with a Hall-to-Pedersen conductivity ratio of 2 to 1. The current flow is sinusoidally over the specified period, shNC [ 2w
drivers have on the electrodynamics of pulsating aurora. This study aims to use the enhanced within the domain because of the stronger particle precipitation (figure 5) from background levels to the e N\ Slev |
_Geospace En?/lro_nment Moldell of Ic&n-Neujral \}\r/mteractlons (or GI_EMIINI_) mod_elhto » The boundary of the domain produces the field-aligned current flow - upward on the chara:jcterlstlc de_n_ergy per unit area as a 125 NN ; =
investigate pulsating auroral electrodynamics. We compare our simulations with a southwest border, and downward on the northeast border (figure 7) poundary condition 20 NN
simplified analytic model from Oguti and Hayashi (1984), as a first step. The _ . Increasing the characteristic ener Ewsp S
GEMINI program was utilized to simulate a simple pulsating aurora structure,  GEMINI reproduces the same pair current structure - southwest current flow enhanced owered tﬂe Sltitude of the peak gy % ol
modulating the characteristic energy of precipitating electrons and the period of within the domain, with field-aligned currents on the northeast and southwest lectron densitv to altitud bt the 90 = B

i i iti i boundaries of the domain (figures 4 and 6) electron density 1o altitudes in the -
pulsation across a range of hypothetical values. In addition to this, some 100 km range (figure 10) 100 | - 5
simulations with modulating field-aligned boundary currents were input to compare » The field-aligned pair current is clearly visible in GEMINI’s output (middle left), whereas . . . 05 Y
with results from the SWARM satellite. This wide array of simulations has revealed the twin vortex is not immediately visible (figure 8) * Increasing the_ per.lod of pulsation sof
the impact of the characteristic energy of precipitating electrons, as well as the . Th e of th ff . h altitude: at | titudes. the Hall t produced aw!denmg of the peak 85}
period of oscillation, on the peak electron density and the height thereof. These . © _an%e O d?hcu]rlren_ OW yal_ries Wlt a Idu te-h? hov:lt'? cllu et?{ el 1a efrm electron density between the peak and o —
electron density changes drive changes in the Hall and Pedersen conductivities ominates ant the Tiow'1s majority westward, at high alitudes, the colision frequency troughs of pulsation (figure 11) 1

decreases and the current flow points southward with the electric field - IR N e
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which impacts the overall electrodynamic circulit. * The range of values (figure 12) aligns

with observations from EISCAT data B
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* Using Maxwell’s equations, the analytical model proposed by Oguti and Hayashi
(1984) produces a two-mode current structure that perturbs the background
current: a divergence-free twin vortex current combined with a field-aligned pair
current flowing opposite the background current system (figure 1)
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* This investigation focused on reproducing the current structure, then modulating ;
the characteristic energy of precipitating electrons from between 2 to 16 keV and
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modulating the period of pulsation from between 4 to 12 seconds, and quantifying | —a |
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* The potential in the 1984 paper is modeled using the following radial distribution: 2001 . . . . 1.5 FIELD ALIGNED PAIR CURRENT AROUND A DOMAIN
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8° = (rE + C/r) cos(8) + (D/r) sin(6) | The simulations pr_oduced )Y, GEMINI are In pa_rtlal agreement with the model
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With the appropriate boundary conditions based on the field-aligned discharge (s 117.0377 km x10° @ fy e o s - 55 » The height and strength of the electron density peak is dependent on the period
rate, the_ current density can be calculated over the domain of interest (Oguti and 200 — and energy of the pulsations, with stronger peaks directly correlated with
Hayashi figure 2, my work figure 3) ~ { 6 R D DA increased period and peak height inversely correlated with characteristic electron
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© 1 ooumesmmens b e - 4 - I 577 . - The twin vortex current does not appear in the GEMINI simulation, possibly due
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